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Computation of the Generalized Impulse Response Functions

This Section documents the algorithm employed to compute the state-dependent GIRFs and their

confidence intervals. The algorithm follows Koop, Pesaran, and Potter (1996), with the modification

of considering an orthogonal structural shock, as in Kilian and Vigfusson (2011). The algorithm is

the same used in Pellegrino (2017).

The theoretical GIRF of the vector of endogenous variables Y, h periods ahead, for a starting

condition $t−1 = {Yt−1, ...,Yt−L} , and a structural shock in date t, δt, can be expressed —
following Koop, Pesaran, and Potter (1996) —as:

GIRFY,t(h, δt,$t−1) = E [Yt+h | δt,$t−1]− E [Yt+h |$t−1] , h = 0, 1, . . . ,H

where E[·] represents the expectation operator. We are interested in the state-dependent GIRFs
for pessimistic and normal times, which can be defined as:

GIRFY,t

(
h, δt,Ω

pessimistic times
t−1

)
= E

[
GIRFY,t

(
h, δt,

{
$t−1 ∈ Ωpessimistic times

t−1

})]
GIRFY,t

(
h, δt,Ω

normal times
t−1

)
= E

[
GIRFY,t

(
h, δt,

{
$t−1 ∈ Ωnormal times

t−1

})]
whereΩi

t−1 denotes the set of histories characterizing the state i = {pessimistic times, normal times}.
The algorithm to estimate our state-conditional GIRF reads as follows:

1. pick an initial condition $t−1 = {Yt−1, ...,Yt−L}, i.e., the historical values for the lagged
endogenous variables at a particular date t = L+ 1, . . . , T . Notice that this set includes the

values for the interaction terms;

2. draw randomly (with repetition) a sequence of (n-dimensional) residuals {ut+h}s, h = 0, 1, ..H =

19 , from the empirical distribution d(0, Ω̂), where Ω̂ is the estimated VCV matrix. In order

to preserve the contemporaneous structural relationships among variables, residuals are as-

sumed to be jointly distributed, so that if date t’s residual is drawn, all n residuals for date
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t are collected;

3. conditional on $t−1 and on the estimated model (1), use the sequence of residuals {ut+h}s

to simulate the evolution of the vector of endogenous variables over the following H periods

to obtain the path Ys
t+h for h = 0, 1 . . . H. s denotes the dependence of the path on the

particular sequence of residuals used;

4. conditional on $t−1 and on the estimated model (1), use the sequence of residuals {ut+h}s

to simulate the evolution of the vector of endogenous variables over the following H periods

when a structural shock δt is imposed to ust . In particular, we Cholesky-decompose Ω̂= CC′

, where C is a lower-triangular matrix. Then, we recover the structural innovation associated

with ust by ε
s
t = C−1ust and add a quantity δ < 0 to the scalar element of εst that refers to

the uncertainty measure, i.e. εst,unc . We then move again to the residual associated with the

structural shock us,δt = Cεs,δt to proceed with simulations as in point 3. Call the resulting

path Ys,δ
t+h;

5. compute the difference between the previous two paths for each horizon and for each variable,

i.e. Ys,δ
t+h −Ys

t+h for h = 0, 1 . . . , H ;

6. repeat steps 2-5 for a number of S = 500 different extractions for the residuals and then take

the average across s. Notice that in this computation the starting month t−1 does not change.

In this way we obtain a consistent point estimate of the GIRF for each given starting month

in our sample , i.e. ĜIRFY,t(δt,$t−1) =
{
Ê [Yt+h | δt,$t−1]− Ê [Yt+h |$t−1]

}19

h=0
. If a

given initial condition $t−1 brings an explosive response (namely if this is explosive for most

of the sequences of residuals drawn {ut+h}s, in the sense that the response of the variable
shocked diverges instead of reverting to zero), it is discarded and not considered for the

computation of state-conditional responses at the next step;1

7. repeat steps 2-6 to obtain an history-conditional GIRF for each initial condition $t−1 of

interest. In particular, we select two particular subsets of initial conditions related to the

historical level of consumer confidence to define two states. An initial condition $t−1 =

1While we allow this to happen for bootstrapped simulated responses, we make sure that this does not happen
for point-estimated responses (i.e. our responses estimated on actual data) so that to back up the stability of the
estimated IVAR . The nonlinear DSGE literature has developed the pruning method in order to preserve stability
(see Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2017)) but this is not currently available for nonlinear
VARs.
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{Yt−1, ...,Yt−L} is classified to belong to the “pessimistic times” state if conft−1 is in the

bottom 20% of the consumer confidence empirical distribution and to the “normal times”

state if conft−1 is in not in its bottom 20%;

8. history-dependent GIRFs obtained in step 7 are then averaged over the state they belong to

produce our estimate of the state-dependent GIRFs, i.e., our

ĜIRFY,t

(
δt,Ω

pessimistic times
t−1

)
and ĜIRFY,t

(
δt,Ω

normal times
t−1

)
;

9. confidence bands around the point estimates obtained in point 8 are computed through boot-

strap2. In particular, we simulate R = 500 datasets statistically equivalent to the actual

sample and for each of them interaction terms are constructed coherently with the simulated

series. Then, for each dataset, (i) we estimate our Interacted VAR model and (ii) implement

steps 1-8. In implementing the procedure the starting conditions and the VCV matrix used in

the computation depend on the particular dataset r used, i.e. $r
t−1 and Ω̂r. Of the resulting

distribution of state-conditional GIRFs, we take the 5th and 95th percentiles to construct the

90% confidence bands.

Computation of the Generalized Forecast Error Variance Decom-

position

The algorithm for the computation of the state-dependent Generalized Forecast Error Variance De-

composition (GFEVD) for our nonlinear VAR model follows Caggiano, Castelnuovo, and Pellegrino

(2017). In particular, the innovations to the algorithm proposed in Lanne and Nyberg (2016) are:

i) it is designed to simulate the importance of an orthogonal structural shock, and ii) it considers

a one standard deviation shock in each variable. The expression at the basis of our computation

of the GFEVD is the same proposed by Lanne and Nyberg (2016, equation 9).

In particular, conditional on a specific initial history $t−1 and a forecast horizon of interest z,

the GFEVDij that refers to a variable i and a shock j whose size is δ
j
t is given by:

GFEVDij(z,$t−1) =

∑z
h=0GIRFYi(h, δ

j
t ,$t−1)2∑n

j=1

∑z
h=0GIRFYi(h, δ

j
t ,$t−1)2

i, j = 1, ..., n, (A1)

2The bootstrap used is similar to the one used by Christiano, Eichenbaum and Evans (1999, footnote 23). Our
code repeats the explosive artificial draws to be sure that exactly 500 draws are used.
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where h is an indicator keeping track of the forecast ahead, and n denotes the number of variables

in the vector Y.3 Differently from Lanne and Nyberg (2016), in our case the object GIRFYi(·) in
the formula refers to GIRFs à la Koop, Pesaran, and Potter (1996) computed by considering an

orthogonal shock as in Kilian and Vigfusson (2011).4 In our application we are interested in the

contribution of an identified uncertainty shock to the GFEVD of all the variables in the vector Y.

Further, while formula (A1) defines the GFEVD for a given history, we are interested in computing

a state-conditional GFEVD referring to a set of histories.

Given our model (1), we compute our state-dependent GFEVD for normal times and pessimistic

times by following the steps indicated below. In particular, we:

1. consider an orthogonal shock equal to a standard deviation in each variable of the estimated

I-VAR model. This is equivalent, for a Cholesky decomposition, to taking a vector of shocks

equal to
(
δ1
t , δ

2
t , ..., δ

n
t

)
= (1, 1, ..., 1) in our algorithm in the previous Section;5

2. pick a history $t−1 from the set of all histories;

3. compute the GIRFY(·, ·,$t−1) for each δjt (j = 1, ..., n) and for each h ≤ z according to

points 2-6 of the algorithm in the previous Section;

4. plug the GIRFs computed in step 3 into equation (A1) to obtain GFEVDij(z,$t−1) for the

particular forecast horizon z and history $t−1 considered;

5. repeat steps 2—4 for all the histories, distinguishing between the histories belonging to the

"normal times" state and the "pessimistic times" state (see the definition in point 7 of the

GIRFs algorithm);

6. compute the state-dependent GFEVD for the "normal times" state and the "pessimistic

times" state by computing the average of the GFEV Dij(z,$t−1) across all the histories

relevant for the two states.
3Expression (A1) gives a GFEVD that by construction lies between 0 and 1, and for which the contribution of all

the shocks on a given variable sum to 1.
4The object GIRFYi(·) in Lanne and Nyberg’s (2016) expression refers to the GIRFs à la Pesaran and Shin (1998).

This definition of the GIRF refers to a non-orthogonalized shock and it can be applied both to linear and to nonlinear
VAR models. Details can be found in Pesaran and Shin (1998) and Lanne and Nyberg (2016).

5The size of the shock matters in a nonlinear model. The use of a one standard deviation shock in all variables allows
our GFEVD algorithm to return the usual Forecast Error Variance (FEV) and Forecast Error Variance Decomposition
(FEVD) quantities referred to an orthogonal shock when the algorithm is applied to a standard linear VAR model.
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Proxy Structural Interacted VAR models

Our reduced-form Interacted VAR model can be written as:

Yt = α+

L∑
j=1

AjYt−j +

 L∑
j=1

cjunct−j · conft−j

+ ut,

from where the corresponding Structural IVAR model can be obtained as:

Yt = α+
L∑
j=1

AjYt−j +

 L∑
j=1

cjunct−j · conft−j

+ B−1
0 νt,

where Yt is a vector of variables of interest, Aj and cj , j = 1, ..., L , are coeffi cient matrices and

coeffi cient vectors, respectively, and νt is a vector of economically meaningful structural shocks

that are a linear combination of the reduced-form IVAR residuals, i.e., εt = B−1
0 νt. Suppose we

are interested in partial identification and, in particular, in the impulse response of a shock νit ∈ νt.
This means that we only need to identify the i-th column of the matrix B−1

0 , b−1
0,i . Call the other

columns as B−1
0,̄ı . Consequently, we can rewrite εt = B−1

0 νt as:

εt = b−1
0,i νit + B−1

0,̄ı ν ı̄t

A Proxy Structural IVAR model allows us to identify the impact vector b−1
0,i by means of an

instrument mt that satisfies the following conditions:

E [mtνit] = φ 6= 0 (Relevance condition)

E [mtν ı̄t] = 0 (Exogeneity condition)
.

The previous conditions imply:

E [mtεt] = b−1
0,iφ,

or: 
E [mtε1t]

E [mtε2t]

.

E [mtεNt]

 =


b−1

0,i (1)φ

b−1
0,i (2)φ

.

b−1
0,i (N)φ

 ,
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where b−1
0,i (z), z = 1, ..., N , denotes z-th element of the vector b−1

0,i . Without loss of generality,

assume that we are interested in the effects of the first shock, or i = 1. Hence with E [mtεt] in hand

we can recover the normalized impact vector as:


1

E[mtε2t]
E[mtε1t]

.
E[mtεNt]
E[mtε1t]

 =


1

b−1
0,1(2)

b−1
0,1(1)

.
b−1

0,1(N)

b−1
0,1(1)

 ,

which corresponds to the impact vector for an unitary shock,
[
1; b−1

0,1(1̄)/b−1
0,1(1)

]
. An estimate of

b−1
0,1(1̄)/b−1

0,1(1) can be obtained from the two stage least square regression of ε1̄t on ε1t using the

instrument mt. The first stage regression:

ε1t = βmt + ξt

yields the fitted values ε̂1t, which are then used in the second stage regression to recover the true

normalized impact vector:

ε1̄t = γε̂it + ςt.

=
b−1

0,1(1̄)

b−1
0,1(1)

ε̂it + ςt,

where the recoverability of b−1
0,1(1̄)/b−1

0,1(1) depends on the fact that E [mtεt] = b−1
0,1φ.

6

The (absolute) impact vector b−1
0,1 can then be derived from the estimated reduced form variance-

covariance matrix, Σ = E [εtε
′
t], as explained, e.g., in Gertler and Karadi (2015).

7 At this point we

can compute the impulse response function to a one standard deviation shock in date t, δt = 1, to

6 Indeed, we have: γ =
E[ε1̄tε̂it]
E[ε̂2it]

=
E[ε1̄tβmt]
E[β2m2

t ]
=

βE[ε1̄tmt]
β2E[m2

t ]
=

E[ε1tmt]

E[m2
t ]

E[ε1̄tmt](
E[ε1tmt]

E[m2
t ]

)2

·E[m2
t ]
=

E[ε1̄tmt]
E[ε1tmt]

=
φb−1

0,1(1̄)

φb−1
0,1(1)

.

7Specifically, to recover the absoulte impact vector we follow Piffer’s notes on the identification of VARs using
external instruments available at https://sites.google.com/site/michelepiffereconomics/ .
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ν1t, according to the usual Generalized IRF à la Koop, Pesaran, and Potter (1996):

GIRFY,t(h, 1,$t−1) = E [Yt+h | δt = 1,$t−1]− E [Yt+h |$t−1] , for h = 0, 1, ...,H

=

{
b−1

0,1 , for h = 0

E[Yt+h |δt = 1,$t−1] − E[Yt+h |$t−1] , for h = 1, ...,H
,

where $t−1 denotes the initial condition, or {Yt−1, ...,Yt−L}. In computing the GIRF we follow
the same algorithm outlined earlier.

Supplementary results

Figure A1 plots the time series that enter our baseline IVAR.

Figure A2 plots the daily VSTOXX index, our proxy for euro area financial uncertainty, against

its monthly average.

Figure A3 in its upper panel plots the consumer confidence indicator released by the european

Commission in April —a leading indicator of future economic activity —, which signaled a confidence

level approaching the number reached during the 2008-2009 financial crisis. The bottom panel of

Figure A3 plots the monthly VSTOXX, our baseline measure of financial uncertainty, which in

March 2020 reached levels comparable to the global financial crisis.

Figure A4 plots all the uncertainty indicators we use in our analysis, as described in the robust-

ness checks Section of the paper.

Figure A5 plots all the indices of survey-based confidence we use in our analysis, as described

in the robustness checks Section of the paper.

Figure A6 plots the pessimistic-times state under the alternative interpretation of pessimism

based on "mood swings", i.e., sudden negative changes in the consumer confidence series. We

classify an initial month to the pessimistic-times state whenever the cumulative change in the last

six months of the Consumer Confidence Index is in its bottom 20%.8 In this way, pessimistic times

only include phases of negative mood swings.

Figure A7 documents that our main results are not driven by the baseline definition of our

pessimistic-times state, based on the bottom quintile of the historical distribution of consumer

confidence. We alternatively use the bottom decile, the bottom tertile, and the median as the

relevant thresholds.
8This threshold corresponds to a cumulative change of −2.5.
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Figure A8 shows how the impulse response of industrial production and inflation change at

the different quintiles of the historical distribution of confidence (for the sake of clarity we only

show the impulse response at five steps ahead, which is the trough of the impulse response of the

linear model). The Figure shows that the impact of uncertainty shocks gradually increases as the

economy’s outlook (in the initial condition) dampens.
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Figure A1: Time series modeled in our baseline IVAR model. Note: the series and their
sources are given in Section 2 of the main paper. The sample period modeled is 1999m1-2020m1.
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Figure A2: VSTOXX index since January 2020. Black solid line: daily index. Black dashed
line: monthly average.
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Figure A3: Consumer Confidence and Uncertainty. Top panel: European Commission Con-
sumer Confidence Index. Bottom panel: VSTOXX. Note: 1999m1-2020m10.
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Figure A4: Uncertainty indicators. Note: 1999m1-2020m11. Each series is standardized to have
0 mean and unit variance to make the series comparable.
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Figure A5: Survey-derived measures of confidence. Note: 1999m1-2020m10. Each series is
standardized to have 0 mean and unit variance to make the series comparable.
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Figure A6: Alternative definition of pessimistic times based on "mood swings". Black
solid line: EC Consumer Confidence Index. Gray line: Cumulative change in the last six months
of the Consumer Confidence Index. Gray vertical bars: Initial quarters with the bottom 20%
cumulative change in the last six months of the confidence series defining the pessimistic times
state. Vertical black dashed line: Denotes the end of the estimation sample.
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Figure A7: Further robustness to alternative IVAR specifications. Top panels: Industrial
Production GIRFs. Bottom Panels: Inflation GIRFs. Left-hand-side panels: Blue dashed lines
and light blue areas represent the point estimates and 90% bootstrapped confidence bands for the
baseline industrial production GIRFs conditional on normal times. Right-hand-side panels: Black
solid lines represent the point estimates (bold lines) and 90% bootstrapped confidence bands for
the baseline industrial production GIRFs conditional on pessimistic times. For the other lines refer
to the legend and the main text. Monthly data.
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Figure A8: Impulse responses at different quintiles of the confidence distribution. Left-
hand-side panel: Industrial production. Right-hand-side panel: Inflation. Black dots: Point es-
timates of the impulse responses at five steps ahead for the alternative sets of initial conditions
referring to each quantile of the confidence distribution. Black bars: 68% bootstrapped confidence
bands. Dashed black lines: Point estimates of the impulse responses for the nested linear VAR
model.
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