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Abstract

In this document, we describe the basic ideas and the methodology

identified to realize the parallel package within the DYNARE project

(called the “Parallel DYNARE” hereafter) and its algorithmic per-

formance. The parallel methodology has been developed taking into

account two different perspectives: the “User perspective” and the

“Developers perspective”. The fundamental requirement of the “User

perspective” is to allow DYNARE users to use the parallel routines

easily, quickly and appropriately. Under the “Developers perspective”,

on the other hand, we need to build a core of parallelizing routines

that are sufficiently abstract and modular to allow DYNARE software

developers to use them easily as a sort of ‘parallel paradigm’, for ap-

plication to any DYNARE routine or portion of code containing com-

putational intensive loops suitable for parallelization. We will finally

show tests showing the effectiveness of the parallel implementation.
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1 The ideas implemented in Parallel DYNARE

The basic idea behind “Parallel Dynare” is to build a framework to paral-

lelize portions of code that require a minimal (i.e. start-end communication)

or no communications between different processes, denoted in the litera-

ture as “embarrassingly parallel” (Goffe and Creel, 2008; Barney, 2009). In

more complicated cases there are different and more sophisticated solutions

to write (or re-write) parallel codes using, for example, OpenMP or MPI.

Within DYNARE, we can find many portions of code with the above fea-

tures: loops of computational sequences with no interdependency that are

coded sequentially. Clearly, this does not make optimal use of computers

having 2-4-8, or more cores or CPUs. The basic idea is to assign the differ-

ent and independent computational sequences to different cores, CPU’s or

computers and coordinating this new distributed computational environment

with the following criteria:

• provide the necessary input data to any sequence, possibly including

results obtained from previous DYNARE sessions (e.g. a first batch of

Metropolis iterations);

• distribute the workload, automatically balancing between the compu-

tational resources;

• collect the output data;

• ensure the coherence of the results with the original sequential execu-

tion.
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Generally, during a program execution, the largest computational time is

spent to execute nested cycles. For simplicity and without loss in generality

we can consider here only for cycles (it is possible to demonstrate that any

while cycle admits an equivalent for cycle). Then, after identifying the

most computationally expensive for cycles, we can split their execution (i.e.

the number or iterations) between different cores, CPUs, computers. For

example, consider the following simple MATLAB piece of code:

...

n=2;

m=10^6;

Matrix= zeros(n,m);

for i=1:n,

Matrix(i,:)=rand(1,m);

end,

Mse= Matrix;

...

Example 1

With one CPU this cycle is executed in sequence: first for i=1, and then

for i=2. Nevertheless, these 2 iterations are completely independent. Then,

from a theoretical point of view, if we have two CPUs (cores) we can rewrite

the above code as:
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...

n=2;

m=10^6;

<provide to CPU1 and CPU2 input data m>

<Execute on CPU1> <Execute on CPU2>

Matrix1 = zeros(1,m); Matrix2 = zeros(1,m);

Matrix1(1,:)=rand(1,m); Matrix2(1,:)=rand(1,m);

save Matrix1 save Matrix2

retrieve Matrix1 and Matrix2

Mpe(1,:) = Matrix1;

Mpe(2,:) = Matrix2;

Example 2

The for cycle has disappeared and it has been split into two separated

sequences that can be executed in parallel on two CPUs. We have the same

result (Mpa=Mse) but the computational time can be reduced up to 50%.

2 The DYNARE environment

We have considered the following DYNARE components suitable to be par-

allelized using the above strategy:

1. the Random Walk- (and the analogous Independent-)-Metropolis-Hastings

algorithm with multiple chains: the different chains are completely in-

dependent and do not require any communication between them, so it

can be executed on different cores/CPUs/Computer Network easily;

2. a number of procedures performed after the completion of Metropolis,

that use the posterior MC sample:

(a) the diagnostic tests for the convergence of the Markov Chain
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(McMCDiagnostics.m);

(b) the function that computes posterior IRF’s (posteriorIRF.m).

(c) the function that computes posterior statistics for filtered and

smoothed variables, forecasts, smoothed shocks, etc..

(prior_posterior_statistics.m).

(d) the utility function that loads matrices of results and produces

plots for posterior statistics (pm3.m).

Unfortunately, MATLAB does not provide commands to simply write

parallel code as in Example 2 (i.e. the pseudo-commands : <provide inputs>,

<execute on CPU> and <retrieve>). In other words, MATLAB does not

allow concurrent programming: it does not support multi-threads, without

the use (and purchase) of MATLAB Distributed Computing Toolbox. Then,

to obtain the behavior described in Example 2, we had to find an alternative

solution.

The solution that we have found can be synthesized as follows:

When the execution of the code should start in parallel (as in Ex-

ample 2), instead of running it inside the active MATLAB ses-

sion, the following steps are performed:

1. the control of the execution is passed to the operating system

(Windows/Linux) that allows for multi-threading;

2. concurrent threads (i.e. MATLAB instances) are launched

on different processors/cores/machines;
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3. when the parallel computations are concluded the control is

given back to the original MATLAB session that collects the

result from all parallel ‘agents’ involved and coherently con-

tinue along the sequential computation.

Three core functions have been developed implementing this behavior,

namely MasterParallel.m, slaveParallel.m and fParallel.m. The first

function (MasterParallel.m) operates at the level of the ‘master’ (original)

thread and acts as a wrapper of the portion of code to be distributed in

parallel, distributes the tasks and collects the results from the parallel com-

putation. The other functions (slaveParallel.m and fParallel.m) operate

at the level of each individual ‘slave’ thread and collect the jobs distributed

by the ‘master’, execute them and make the final results available to the

master. The two different implementations of slave operation comes from

the fact that, in a single DYNARE session, there may be a number paral-

lelized sessions that are launched by the master thread. Therefore, those two

routines reflect two different versions of the parallel package:

1. the ‘slave’ MATLAB sessions are closed after completion of each single

job, and new instances are called for any subsequent parallelized task

(fParallel.m);

2. once opened, the ‘slave’ MATLAB sessions are kept open during the

DYNARE session, waiting for the jobs to be executed, and are only

closed upon completion of the DYNARE session on the ‘master’ (slaveParallel.m).

We will see that none of the two options is superior to the other, depending

on the model size.
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3 Installation and utilization

Here we describe how to run parallel sessions in DYNARE and, for the devel-

opers community, how to apply the package to parallelize any suitable piece

of code that may be deemed necessary.

3.1 Requirements

3.1.1 For a Windows grid

1. a standard Windows network (SMB) must be in place;

2. PsTools (Russinovich, 2009) must be installed in the path of the master

Windows machine;

3. the Windows user on the master machine has to be user of any other

slave machine in the cluster, and that user will be used for the remote

computations.

3.1.2 For a UNIX grid

1. SSH must be installed on the master and on the slave machines;

2. the UNIX user on the master machine has to be user of any other

slave machine in the cluster, and that user will be used for the remote

computations;

3. SSH keys must be installed so that the SSH connection from the master

to the slaves can be done without passwords, or using an SSH agent.
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3.2 The user perspective

We assume here that the reader has some familiarity with DYNARE and its

use. For the DYNARE users, the parallel routines are fully integrated and

hidden inside the DYNARE environment.

3.2.1 The interface

The general idea is to put all the configuration of the cluster in a config file

different from the MOD file, and to trigger the parallel computation with

option(s) on the dynare command line. The configuration file is designed as

follows:

• be in a standard location

– $HOME/.dynare under Unix;

– c:\Documents and Setting\<username>\Application Data\dynare.ini on

Windows;

• have provisions for other Dynare configuration parameters unrelated to

parallel computation

• allow to specify several clusters, each one associated with a nickname;

• For each cluster, specify a list of slaves with a list of options for each

slave [if not explicitly specified by the configuration file, the preproces-

sor sets the options to default];

The list of slave options includes:

Name : name of the node;
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CPUnbr : this is the number of CPU’s to be used on that computer; if

CPUnbr is a vector of integers, the syntax is [s:d], with d>=s (d, s

are integer); the first core has number 1 so that, on a quad-core, use 4

to use all cores, but use [3:4]to specify just the last two cores (this is

particularly relevant for Windows where it is possible to assign jobs to

specific processors);

ComputerName : Computer name on the network or IP address; use the

NETBIOS name under Windows1, or the DNS name under Unix.;

UserName : required for remote login; in order to assure proper communi-

cations between the master and the slave threads, it must be the same

user name actually logged on the ‘master’ machine. On a Windows

network, this is in the form DOMAIN\username, like DEPT\JohnSmith,

i.e. user JohnSmith in windows group DEPT;

Password : required for remote login (only under Windows): it is the user

password on DOMAIN and ComputerName;

RemoteDrive : Drive to be used on remote computer (only for Windows,

for example the drive C or drive D);

RemoteDirectory : Directory to be used on remote computer, the parallel

toolbox will create a new empty temporary subfolder which will act as

remote working directory;

1In Windows XP it is possible find this name in ’My Computer’ − > mouse right click
− > ’Property’ − > ’Computer Name’.
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DynarePath : path to matlab directory within the Dynare installation

directory;

MatlabOctavePath : path to MATLAB or Octave executable;

SingleCompThread : disable MATLAB’s native multithreading;

Those options have the following specifications:

Node Options type default Win Unix
Local Remote Local Remote

Name string (stop) * * * *
CPUnbr integer (stop) * * * *

or array
ComputerName string (stop) * *
UserName string empty * *
Password string empty *
RemoteDrive string empty *
RemoteDirectory string empty * *
DynarePath string empty
MatlabOctavePath string empty
SingleCompThread boolean true

The cluster options are as follows

Cluster Options type default Meaning Required
Name string empty name of the node *
Members string empty list of members in this cluster *

The syntax of the configuration file will take the following form (the order

in which the clusters and nodes are listed is not significant):
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[cluster]

Name = c1

Members = n1 n2 n3

[cluster]

Name = c2

Members = n2 n3

[node]

Name = n1

ComputerName = localhost

CPUnbr = 1

[node]

Name = n2

ComputerName = karaba.cepremap.org

CPUnbr = 5

UserName = houtanb

RemoteDirectory = /home/houtanb/Remote

DynarePath = /home/houtanb/dynare/matlab

MatlabOctavePath = matlab

[node]

Name = n3

ComputerName = hal.cepremap.ens.fr

CPUnbr = 3

UserName = houtanb

RemoteDirectory = /home/houtanb/Remote

DynarePath = /home/houtanb/dynare/matlab

MatlabOctavePath = matlab

Finally, the DYNARE command line options are:

• conffile=<path>: specify the location of the configuration file if it is

not standard

• parallel: trigger the parallel computation using the first cluster spec-

ified in config file

• parallel=<clustername>: trigger the parallel computation, using the
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given cluster

• parallel_slave_open_mode: use the leaveSlaveOpen mode in the clus-

ter

• parallel_test: just test the cluster, dont actually run the MOD file

3.2.2 Preprocessing cluster settings

The DYNARE pre-processor treats user-defined configurations by filling a

new sub-structure in the options_ structure, named parallel, with the

following fields:

options_.parallel=

struct(’Local’, Value,

’ComputerName’, Value,

’CPUnbr’, Value,

’UserName’, Value,

’Password’, Value,

’RemoteDrive’, Value,

’RemoteFolder’, Value,

’MatlabOctavePath’, Value,

’DynarePath’, Value);

All these fields correspond to the slave options except Local, which is set

by the pre-processor according to the value of ComputerName:

Local: the variable Local is binary, so it can have only two values 0 and 1.

If ComputerName is set to localhost, the preprocessor sets Local = 1

and the parallel computation is executed on the local machine, i.e.

on the same computer (and working directory) where the DYNARE

project is placed. For any other value for ComputerName, we will have

Local = 0;
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In addition to the parallel structure, which can be in a vector form, to

allow specific entries for each slave machine in the cluster, there is another

options_ field, called parallel_info, which stores all options that are com-

mon to all cluster. Namely, according to the parallel_slave_open_mode in

the command line, the leaveSlaveOpen field takes values:

leaveSlaveOpen=1 : with parallel_slave_open_mode, i.e. the slaves op-

erate ‘Always-Open’.

leaveSlaveOpen=0 : without parallel_slave_open_mode, i.e. the slaves

operate ‘Open-Close’;

3.2.3 Example syntax for Windows and Unix, for local parallel

runs (assuming quad-core)

In this case, the only slave options are ComputerName and CPUnbr.

[cluster]

Name = local

Members = n1

[node]

Name = n1

ComputerName = localhost

CPUnbr = 4

3.2.4 Examples of Windows syntax for remote runs

• the Windows Password has to be typed explicitly;

• RemoteDrive has to be typed explicitly;
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• for UserName, ALSO the group has to be specified, like DEPT\JohnSmith,

i.e. user JohnSmith in windows group DEPT;

• ComputerName is the name of the computer in the windows network,

i.e. the output of hostname, or the full IP address.

Example 1 Parallel codes that are run on a remote computer named vonNeumann

with eight cores, using only the cores 4,5,6, working on the drive ’C’

and folder ’dynare_calcs\Remote’. The computer vonNeumann is in a

net domain of the CompuTown university, with user John logged with

the password *****:

[cluster]

Name = vonNeumann

Members = n2

[node]

Name = n2

ComputerName = vonNeumann

CPUnbr = [4:6]

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

Example 2 We can build a cluster, combining local and remote runs. For

example the following configuration file includes the two previous con-

figurations but also gives the possibility (with cluster name c2) to build

a grid with a total number of 7 CPU’s :
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[cluster]

Name = local

Members = n1

[cluster]

Name = vonNeumann

Members = n2

[cluster]

Name = c2

Members = n1 n2

[node]

Name = n1

ComputerName = localhost

CPUnbr = 4

[node]

Name = n2

ComputerName = vonNeumann

CPUnbr = [4:6]

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

Example 3 We can build a cluster, combining many remote machines. For

example the following commands build a grid of four machines with a

total number of 14 CPU’s:
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[cluster]

Name = c4

Members = n1 n2 n3 n4

[node]

Name = n1

ComputerName = vonNeumann1

CPUnbr = 4

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

[node]

Name = n2

ComputerName = vonNeumann2

CPUnbr = 4

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

[node]

Name = n3

ComputerName = vonNeumann3

CPUnbr = 2

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = D

RemoteDirectory = dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

[node]

Name = n4

ComputerName = vonNeumann4

CPUnbr = 4

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = C

RemoteDirectory = John\dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab
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3.2.5 Example Unix syntax for remote runs

• no Password and RemoteDrive fields are needed;

• ComputerName is the full IP address or the DNS address.

One remote slave: the following command defines remote runs on the ma-
chine name.domain.org.

[cluster]

Name = unix1

Members = n2

[node]

Name = n2

ComputerName = name.domain.org

CPUnbr = 4

UserName = JohnSmith

RemoteDirectory = /home/john/Remote

DynarePath = /home/john/dynare/matlab

MatlabOctavePath = matlab

Combining local and remote runs: the following commands define a clus-
ter of local an remote CPU’s.
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[cluster]

Name = unix2

Members = n1 n2

[node]

Name = n1

ComputerName = localhost

CPUnbr = 4

[node]

Name = n2

ComputerName = name.domain.org

CPUnbr = 4

UserName = JohnSmith

RemoteDirectory = /home/john/Remote

DynarePath = /home/john/dynare/matlab

MatlabOctavePath = matlab

3.2.6 Testing the cluster

In this section we describe what happens when the user omits a mandatory

entry or provides bad values for them and how DYNARE reacts in these cases.

In the parallel package there is a utility (AnalyseComputationalEnvironment.m)

devoted to this task (this is triggered by the command line option parallel_test).

When necessary during the discussion, we use the parallel entries used in

the previous examples.

ComputerName: If Local=0, DYNARE checks if the computer vonNeumann

exists and if it is possible communicate with it. If this is not the case,

an error message is generated and the computation is stopped.

CPUnbr: a value for this variable must be in the form [s:d] with d>=s. If

the user types values s>d, their order is flipped and a warning message

is sent. When the user provides a correct value for this field, DYNARE
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checks if d CPUs (or cores) are available on the computer. Suppose

that this check returns an integer nC. We can have three possibilities:

1. nC= d; all the CPU’s available are used, no warning message are

generated by DYNARE;

2. nC> d; some CPU’s will not be used;

3. nC< d; DYNARE alerts the user that there are less CPU’s than

those declared. The parallel tasks would run in any case, but

some CPU’s will have multiple instances assigned, with no gain in

computational time.

UserName & Password: if Local = 1, no information about user name

and password is necessary: “I am working on this computer”. When

remote computations on a Windows network are required, DYNARE

checks if the user name and password are correct, otherwise execution

is stopped with an error; for a Unix network, the user and the proper

operation of SSH is checked;

RemoteDrive & RemoteDirectory: if Local = 1, these fields are not re-

quired since the working directory of the ‘slaves’ will be the same of the

‘master’. If Local = 0, DYNARE tries to copy a file (Tracing.txt)

in this remote location. If this operation fails, the DYNARE execution

is stopped with an error;

MatlabOctavePath & DynarePath: MATLAB instances are tried on slaves

and the DYNARE path is checked.
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3.3 The Developers perspective

In this section we describe with some accuracy the DYNARE parallel rou-

tines.

Windows: With Windows operating system, the parallel package requires

the installation of a free software package called PsTools (Russinovich,

2009). PsTools suite is a resource kit with a number of command line

tools that mimics administrative features available under the Unix en-

vironment. PsTools can be downloaded from Russinovich (2009) and

extracted in a Windows directory on your computer: to make PsTools

working properly, it is mandatory to add this directory to the Win-

dows path. After this step it is possible to invoke and use the PsTools

commands from any location in the Windows file system. PsTools,

MATLAB and DYNARE have to be installed and work properly on all

the machines in the grid for parallel computation.

Unix: With Unix operating system, SSH must be installed on the master

and on the slave machines. Moreover, SSH keys must be installed so

that the SSH connections from the master to the slaves can be done

without passwords.

As soon as the computational environment is set-up for working on a grid

of CPU’s, the parallel package allows to parallelize any loop that is compu-

tationally expensive, following the step by step procedure showed in Table

1. This is done using five basic functions: masterParallel.m, fParallel.m

or slaveParallel.m, fMessageStatus.m, closeSlave.m.
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masterParallel is the entry point to the parallelization system:

• It is called from the master computer, at the point where the par-

allelization system should be activated. Its main arguments are

the name of the function containing the task to be run on every

slave computer, inputs to that function stored in two structures

(one for local and the other for global variables), and the con-

figuration of the cluster; this function exits when the task has

finished on all computers of the cluster, and returns the output in

a structure vector (one entry per slave);

• all file exchange through the filesystem is concentrated in this

masterParallel routine: so it prepares and send the input infor-

mation for slaves, it retrieves from slaves the info about the status

of remote computations stored on remote slaves by the remote pro-

cesses; finally it retrieves outputs stored on remote machines by

slave processes;

• there are two modes of parallel execution, triggered by option

parallel_slave_open_mode:

– when parallel_slave_open_mode=0, the slave processes are

closed after the completion of each task, and new instances

are initiated when a new job is required; this mode is managed

by fParallel.m [‘Open-Close’];

– when parallel_slave_open_mode=1, the slave processes are

kept running after the completion of each task, and wait for

new jobs to be performed; this mode is managed by slaveParallel.m

22



[‘Always-Open’];

slaveParallel.m/fParallel.m: are the top-level functions to be run on

every slave; their main arguments are the name of the function to be run

(containing the computing task), and some information identifying the

slave; the functions use the input information that has been previously

prepared and sent by masterParallel through the filesystem, call the

computing task, finally the routines store locally on remote machines

the outputs such that masterParallel retrieves back the outputs to

the master computer;

fMessageStatus.m: provides the core for simple message passing during

slave execution: using this routine, slave processes can store locally

on remote machine basic info on the progress of computations; such in-

formation is retrieved by the master process (i.e. masterParallel.m)

allowing to echo progress of remote computations on the master; the

routine fMessageStatus.m is also the entry-point where a signal of in-

terruption sent by the master can be checked and executed; this routine

typically replaces calls to waitbar.m;

closeSlave.m is the utility that sends a signal to remote slaves to close

themselves. In the standard operation, this is only needed with the

‘Always-Open’ mode and it is called when DYNARE computations

are completed. At that point, slaveParallel.m will get a signal to

terminate and no longer wait for new jobs. However, this utility is

also useful in any parallel mode if, for any reason, the master needs to

interrupt the remote computations which are running;
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The parallel toolbox also includes a number of utilities:

• AnalyseComputationalEnviroment.m: this a testing utility that checks

that the cluster works properly and echoes error messages when prob-

lems are detected;

• InitializeComputationalEnviroment.m : initializes some internal

variables and remote directories;

• distributeJobs.m: uses a simple algorithm to distribute evenly jobs

across the available CPU’s;

• a number of generalized routines that properly perform delete, copy,

mkdir, rmdir commands through the network file-system (i.e. used

from the master to operate on slave machines); the routines are adap-

tive to the actual environment (Windows or Unix);

dynareParallelDelete.m : generalized delete;

dynareParallelDir.m : generalized dir;

dynareParallelGetFiles.m : generalized copy FROM slaves TO mas-

ter machine;

dynareParallelMkDir.m : generalized mkdir on remote machines;

dynareParallelRmDir.m : generalized rmdir on remote machined;

dynareParallelSendFiles.m : generalized copy TO slaves FROM

master machine;

In Table 1 we have synthesized the main steps for parallelizing MATLAB

codes.
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1. locate within DYNARE the portion of code suitable to be parallelized,
i.e. an expensive cycle for;

2. suppose that the function tuna.m contains a cycle for that is suitable
for parallelization: this cycle has to be extracted from tuna.m and put
it in a new MATLAB function named tuna_core.m;

3. at the point where the expensive cycle should start, the function
tuna.m invokes the utility masterParallel.m, passing to it the
options_.parallel structure, the name of the of the function to be
run in parallel (tuna_core.m), the local and global variables needed
and all the information about the files (MATLAB functions *.m; data
files *.mat) that will be handled by tuna_core.m;

4. the function masterParallel.m reads the input arguments provided
by tuna.m and:

• decides how to distribute the task evenly across the avail-
able CPU’s (using the utility routine distributeJobs.m); pre-
pares and initializes the computational environment (i.e. copy
files/data) for each slave machine;

• uses the PsTools and the Operating System commands to launch
new MATLAB instances, synchronize the computations, monitor
the progress of slave tasks through a simple message passing sys-
tem (see later) and collect results upon completion of the slave
threads;

5. the slave threads are executed using the MATLAB functions
fParallel.m/slaveParallel.m as wrappers for implementing the
tasks sent by the master (i.e. to run the tuna_core.m routine);

6. the utility fMessageStatus.m can be used within the core routine
tuna_core.m to send information to the master regarding the progress
of the slave thread;

7. when all DYNARE computations are completed, closeSlave.m closes
all open remote MATLAB/OCTAVE instances waiting for new jobs to
be run.

Table 1: Procedure for parallelizing portions of codes.
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So far, we have parallelized the following functions, by selecting the most

computationally intensive loops:

1. the cycle looping for multiple chain random walk Metropolis:

random_walk_metropolis_hastings,

random_walk_metropolis_hastings_core;

2. the cycle looping for multiple chain independent Metropolis:

independent_metropolis_hastings.m,

independent_metropolis_hastings_core.m;

3. the cycle looping over estimated parameters computing univariate di-

agnostics:

McMCDiagnostics.m,

McMCDiagnostics_core.m;

4. the Monte Carlo cycle looping over posterior parameter subdraws per-

forming the IRF simulations (<*>_core1) and the cycle looping over

exogenous shocks plotting IRF’s charts (<*>_core2):

posteriorIRF.m,

posteriorIRF_core1.m, posteriorIRF_core2.m;

5. the Monte Carlo cycle looping over posterior parameter subdraws, that

computes filtered, smoothed, forecasted variables and shocks:

prior_posterior_statistics.m,

prior_posterior_statistics_core.m;

6. the cycle looping over endogenous variables making posterior plots of

filter, smoother, forecasts: pm3.m, pm3_core.m.
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3.3.1 Write a parallel code: an example

Using a MATLAB pseudo (but very realistic) code, we now describe in detail

how to use the above step by step procedure to parallelize the random walk

Metropolis Hastings algorithm. Any other function can be parallelized in the

same way.

It is obvious that most of the computational time spent by the

random_walk_metropolis_hastings.m function is given by the cycle loop-

ing over the parallel chains performing the Metropolis:

function random_walk_metropolis_hastings

(TargetFun, ProposalFun, ..., varargin)

[...]

for b = fblck:nblck,

...

end

[...]

Since those chains are totally independent, the obvious way to reduce the

computational time is to parallelize this loop, executing the (nblck-fblck)

chains on different computers/CPUs/cores.

To do so, we remove the for cycle and put it in a new function named

<*>_core.m:
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function myoutput =

random_walk_metropolis_hastings_core(myinputs,fblck,nblck, ...)

[...]

just list global variables needed (they are set-up properly by fParallel or slaveParallel)

global bayestopt_ estim_params_ options_ M_ oo_

here we collect all local variables stored in myinputs

TargetFun=myinputs.TargetFun;

ProposalFun=myinputs.ProposalFun;

xparam1=myinputs.xparam1;

[...]

here we run the loop

for b = fblck:nblck,

...

end

[...]

here we wrap all output arguments needed by the ‘master’ routine

myoutput.record = record;

[...]

The split of the for cycle has to be performed in such a way that the new

<*>_core function can work in both serial and parallel mode. In the latter

case, such a function will be invoked by the slave threads and executed for

the number of iterations assigned by masterParallel.m.

The modified random_walk_metropolis_hastings.m is therefore:
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function random_walk_metropolis_hastings(TargetFun,ProposalFun,,varargin)

[...]

% here we wrap all local variables needed by the <*>_core function

localVars = struct(’TargetFun’, TargetFun, ...

[...]

’d’, d);

[...]

% here we put the switch between serial and parallel computation:

if isnumeric(options_.parallel) || (nblck-fblck)==0,

% serial computation

fout = random_walk_metropolis_hastings_core(localVars, fblck,nblck, 0);

record = fout.record;

else

% parallel computation

% global variables for parallel routines

globalVars = struct(’M_’,M_, ...

[...]

’oo_’, oo_);

% which files have to be copied to run remotely

NamFileInput(1,:) = {’’,[ModelName ’_static.m’]};

NamFileInput(2,:) = {’’,[ModelName ’_dynamic.m’]};

[ ...]

% call the master parallelizing utility

[fout, nBlockPerCPU, totCPU] = masterParallel(options_.parallel, ...

fblck, nblck, NamFileInput, ’random_walk_metropolis_hastings_core’,

localVars, globalVars, options_.parallel_info);

% collect output info from parallel tasks provided in fout

[ ...]

end

% collect output info from either serial or parallel tasks

irun = fout(1).irun;

NewFile = fout(1).NewFile;

[...]

Finally, in order to allow the master thread to monitor the progress of the

slave threads, some message passing elements have to be introduced in the
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<*>_core.m file. The utility function fMessageStatus.m has been designed

as an interface for this task, and can be seen as a generalized form of the

MATLAB utility waitbar.m.
In the following example, we show a typical use of this utility, again from

the random walk Metropolis routine:

for j = 1:nruns

[...]

% define the progress of the loop:

prtfrc = j/nruns;

% define a running message:

% first indicate which chain is running on the current CPU [b]

% out of the chains [mh_nblock] requested by the DYNARE user

waitbarString = [ ’(’ int2str(b) ’/’ int2str(mh_nblck) ’) ...

% then add possible further information, like the acceptation rate

’ sprintf(’%f done, acceptation rate %f’,prtfrc,isux/j)]

if mod(j, 3)==0 & ~whoiam

% serial computation

waitbar(prtfrc,hh,waitbarString);

elseif mod(j,50)==0 & whoiam,

% parallel computation

fMessageStatus(prtfrc, ...

whoiam, ...

waitbarString, ...

waitbarTitle, ...

options_.parallel(ThisMatlab))

end

[...]

end

In the previous example, a number of arguments are used to identify which
CPU and which computer in the claster is sending the message, namely:
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% whoiam [int] index number of this CPU among all CPUs in the

% cluster

% ThisMatlab [int] index number of this slave machine in the cluster

% (entry in options_.parallel)

The message is stored as a MATLAB data file *.mat saved on the working

directory of remote slave computer. The master will will check periodically

for those messages and retrieve the files from remote computers and produce

an advanced monitoring plot.

So, assuming to run two Metropolis chains, under the standard serial

implementation there will be a first waitbar popping up on matlab, corre-

sponding to the first chain: 

 
 
 
 
 

 
 
 
 

 

followed by a second waitbar, when the first chain is completed.

 

 
 
 
 
 

 
 
 
 

 

On the other hand, under the parallel implementation, a parallel moni-

toring plot will be produced by masterParallel.m:
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4 Parallel DYNARE: testing

We checked the new parallel platform for DYNARE performing a number of

tests, using different models and computer architectures. We present here

all tests performed with Windows Xp/Matlab. However, similar tests were

performed successfully under Linux/Ubuntu environment. In the Bayesian

estimation of DSGE models with DYNARE, most of the computing time is

devoted to the posterior parameter estimation with the Metropolis algorithm.

The first and second tests are therefore focused on the parallelization of the

Random Walking Metropolis Hastings algorithm (Sections 4.1-4.2). In addi-

tion, further tests (Sections 4.3-4.4) are devoted to test all the parallelized

functions in DYNARE. Finally, we compare the two parallel implementations

of the Metropolis Hastings algorithms, available in DYNARE: the Indepen-

dent and the Random Walk (Section ??).

4.1 Test 1.

The main goal here was to evaluate the parallel package on a fixed hardware

platform and using chains of variable length. The model used for testing is

a modification of Hradisky et al. (2006). This is a small scale open economy

DSGE model with 6 observed variables, 6 endogenous variables and 19 pa-

rameters to be estimated. We estimated the model on a bi-processor machine

(Fujitsu Siemens, Celsius R630) powered with an Intel(R) Xeon(TM) CPU

2.80GHz Hyper Treading Technology; first with the original serial Metropo-

lis and subsequently using the parallel solution, to take advantage of the

two processors technology. We ran chains of increasing length: 2500, 5000,
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10,000, 50,000, 100,000, 250,000, 1,000,000.
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Figure 1: Computational time (in minutes) versus chain length for the serial
and parallel implementation (Metropolis with two chains).
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Figure 2: Reduction of computational time (i.e. the ‘time gain’) using the
parallel coding versus chain length. The time gain is computed as (Ts −
Tp)/Tp, where Ts and Tp denote the computing time of the serial and parallel
implementations respectively.
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Overall results are given in Figure 1, showing the computational time

versus chain length, and Figure 2, showing the reduction of computational

time (or the time gain) with respect to the serial implementation provided

by the parallel coding. The gain in computing time of the exercise is of about

45% on this test case, so reducing from 11.40 hours to about 6 hours the cost

of running 1,000,000 Metropolis iterations (the ideal gain would be of 50%

in this case).

4.2 Test 2.

The scope of the second test was to verify if results were robust over different

hardware platforms. We estimated the model with chain lengths of 1,000,000

runs on the following hardware platforms:

• Single processor machine: Intel(R) Pentium4(R) CPU 3.40GHz with

Hyper Treading Technology (Fujitsu-Siemens Scenic Esprimo);

• Bi-processor machine: two CPU’s Intel(R) Xeon(TM) 2.80GHz Hyper

Treading Technology (Fujitsu-Siemens, Celsius R630);

• Dual core machine: Intel Centrino T2500 2.00GHz Dual Core (Fujitsu-

Siemens, LifeBook S Series).

We first run the tests with normal configuration. However, since (i) dis-

similar software environment on the machine can influence the computation;

(ii) Windows service (Network, Hard Disk writing, Demon, Software Updat-

ing, Antivirus, etc.) can start during the simulation; we also run the tests

not allowing for any other process to start during the estimation. Table 2
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Machine Single-processor Bi-processor Dual core
Parallel 8:01:21 7:02:19 5:39:38
Serial 10:12:22 13:38:30 11:02:14
Speed-Up rate 1.2722 1.9381 1.9498
Ideal Speed-UP rate ∼1.5 2 2

Table 2: Trail results with normal PC operation. Computing time expressed
in h:m:s. Speed-up rate is computed as Ts/Tp, where Ts and Tp are the
computing times for the serial and parallel implementations.

gives results for the ordinary software environment and process priority is set

as low/normal.

Results showed that Dual-core technology provides a similar gain if com-

pared with bi-processor results, again about 45%. The striking results was

that the Dual-core processor clocked at 2.0GHz was about 30% faster than

the Bi-processor clocked at 2.8GHz. Interesting gains were also obtained via

multi-threading on the Single-processor machine, with speed-up being about

1.27 (i.e. time gain of about 21%). However, beware that we burned a num-

ber of processors performing tests on single processors with hyper-threading

and using very long chains (1,000,000 runs)! We re-run the tests on the

Dual-core machine, by cleaning the PC operation from any interference by

other programs and show results in Table 3. A speed-up rate of 1.06 (i.e.

5.6% time gain) can be obtained simply hiding the MATLAB waitbar. The

speed-up rate can be pushed to 1.22 (i.e. 18% time gain) by disconnecting

the network and setting the priority of the process to real time. It can be

noted that from the original configuration, taking 11:02 hours to run the

two parallel chains, the computational time can be reduced to 4:40 hours

(i.e. for a total time gain of over 60% with respect to the serial computa-

tion) by parallelizing and optimally configuring the operating environment.
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Environment Computing time Speed-up rate
w.r.t. Table 2

Parallel Waitbar Not Visi-
ble

5:06:00 1.06

Parallel waitbar Not Visi-
ble, Real-time Process pri-
ority, Unplugged network
cable.

4:40:49 1.22

Table 3: Trail results with different software configurations (optimized oper-
ating environment for computational requirements).

These results are somehow surprising and show how it is possible to reduce

dramatically the computational time with slight modification in the software

configuration.

Given the excellent results reported above, we have parallelized many

other DYNARE functions. This implies that parallel instances can be in-

voked many times during a single DYNARE session. Under the basic parallel

toolbox implementation, that we call the ‘Open/Close’ strategy, this implies

that MATLAB instances are opened and closed many times by system calls,

possibly slowing down the computation, specially for ‘entry-level’ computer

resources. As mentioned before, this suggested to implement an alternative

strategy for the parallel toolbox, that we call the ‘Always-Open’ strategy,

where the slave MATLAB threads, once opened, stay alive and wait for new

tasks assigned by the master until the full DYNARE procedure is completed.

We show next the tests of these latest implementations.
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4.3 Test 3

In this Section we use the Lubik (2003) model as test function2 and a very

simple computer class, quite diffuse nowadays: Netbook personal Computer.

In particular we used the Dell Mini 10 with Processor Intel Atom Z520 (1,33

GHz, 533 MHz), 1 GB di RAM (with Hyper-trading). First, we tested the

computational gain of running a full Bayesian estimation: Metropolis (two

parallel chains), MCMC diagnostics, posterior IRF’s and filtered, smoothed,

forecasts, etc. In other words, we designed DYNARE sessions that invoke

all parallelized functions. Results are shown in Figures 3-4. In Figure 3 we

show the computational time versus the length of the Metropolis chains in

the serial and parallel setting (‘Open/Close’ strategy). With very short chain

length, parallel setting obviously slows down performances of the computa-

tions (due to delays in open/close MATLAB sessions and in synchronization),

while increasing the chain length, we can get speed-up rates up to 1.41 on

this ‘entry-level’ portable computer (single processor and Hyper-threading).

In order to appreciate the gain of parallelizing all functions invoked after

Metropolis, in Figure 4 we show the results of the experiment, but with-

out running Metropolis, i.e. we use the options load_mh_files = 1 and

mh_replic = 0 DYNARE options (i.e. Metropolis and MCMC diagnostics

are not invoked). The parallelization of the functions invoked after Metropo-

lis allows to attain speed-up rates of 1.14 (i.e. time gain of about 12%).

Note that the computational cost of these functions is proportional to the

chain length only when the latter is relatively small. In fact, the number of

2The Lubik (2003) model is also selected as the ‘official’ test model for the parallel
toolbox in DYNARE.
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  Chains Length    Time Serial    Time Parallel 
           
  105        85      151 
  1005        246      287 
  5005        755      599 
  10005        1246      948 
  15005        1647      1250 
  20005        2068      1502 
  25005        2366      1675 
 
Table3. Computational Time using all the parallel functions in DYNARE and the 
Open/Close strategy. 
 
We can also plot the results in table 3. We call this situation Complete Parallel … 
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Figure 3. The plot of data in Table 3. 
 
 
Figure 3. show as … 
 

Figure 3: Computational Time (s) versus Metropolis length, running all the
parallelized functions in DYNARE and the basic parallel implementation
(the ‘Open/Close’ strategy). (Lubik, 2003).

 9

Now  we  test  the  computational  time  for  the  model  without  the  Metropolis 
Hasting: 
 
Chains Length    Comp Time Serial    Comp Time Parallel  
     
105        84        117 
1005        121        165 
5005        252        239 
10005        353        330 
15005        366        339 
20005        383        335 
25005        357        314 
 
Table4.  Computational  Time  without  the  computation  of Metropolis  Hasting 
algorithm and the Open/Close strategy. 
 
 
 
We can also plot the results in table 4: 
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Figure 4. The plot of data in Table 4. 

Figure 4: Computational Time (s) versus Metropolis length, loading previ-
ously performed MH runs and running only the parallelized functions after
Metropolis (Lubik, 2003). Basic parallel implementation (the ‘Open/Close’
strategy).
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Figure 4. show as … 
 
Comments … 
 
As reported in … we also introduced a new computational Matlab instances are 
always open … 
 
Chain 
Lenght 

Computational Times: 
Complete Parallel 

Computational Times: 
Partial Parallel 

105 103 95
1005 209 122
5005 504 205

10005 915 306
15005 1203 320
20005 1506 334
25005 1611 322

Table5. Computational Time with Always Open strategy. 
 
We can also plot and compare the results in table 5 with results in table 3 and 4.: 
 

Open/Close vs AlwaysOpen
Complete Parallel

0

200

400

600

800

1000

1200

1400

1600

1800

105 1005 5005 10005 15005 20005 25005

MH Runs

Co
m

pu
ta

tio
na

l T
im

e 
(s

ec
)

Open/Close
Always Open

  
Figure 5. The compared computational time for “complete” parallel . 

Figure 5: Comparison of the ‘Open/Close’ strategy and the ‘Always-open’
strategy. Computational Time (s) versus Metropolis length, running all the
parallelized functions in DYNARE (Lubik, 2003).

sub-draws taken by posteriorIRF.m or prior_posterior_statistics.m is

proportional to the total number of MH draws up to a maximum thresh-

old of 500 sub-draws (for IRF’s) and 1,200 sub-draws (for smoother). This

is reflected in the shape of the plots, which attain a plateau when these

thresholds are reached. In Figures 5-6 we plot results of the same type of

tests just described, but comparing the ‘Open/Close’ and the ‘Always-open’

strategies. We can see in both graphs that the more sophisticated approach

’Always-open’ provides some reduction in computational time. When the

entire Bayesian analysis is performed (including Metropolis and MCMC di-

agnostics, Figure 5) the gain is on average of 5%, but it can be more than

10% for short chains. When the Metropolis is not performed, the gain rises

on average at about 10%. As expectable, the gain of the ‘Always-open’ strat-

egy is specially visible when the computational time spent in a single parallel

session is not too long if compared to the cost of opening and closing new
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Figure 6. The compared computational time for “partial” parallel . 
 
 
3.1. In this section we try to use the QUEST III model Ratto (2009) and: Dell Mini 

10 with Processor Intel® Atom™ Z520 (1,33 GHz, 533 MHz), 1 GB di RAM. 

 

But it is impossible to do it: in fact for example with only 1005 MH runs the 

computational time is serial about 54 min, parallel 40 min. If the runs are 5005 the serial 

time is about 4 h and 4 min … sob! 

 

Test 4 

We proceed as in Test 3 but using the very big models QUEST III and a Notebook 

Samsunq Q 45 with an Dual core Processor Intel Centrino. 

 

 

Figure 6: Comparison of the ‘Open/Close’ strategy and the ‘Always-open’
strategy. Computational Time (s) versus Metropolis length, running only
the parallelized functions after Metropolis (Lubik, 2003).

MATLAB sessions under the ‘Open/Close’ approach.

4.4 Test 4

Here we increase the dimension of the test model, using the QUEST III

model (Ratto et al., 2009), using a more powerful Notebook Samsung Q 45

with an Dual core Processor Intel Centrino. In Figures 7-8 we show the

computational gain of the parallel coding with the ‘Open/Close’ strategy.

When the Metropolis is included in the analysis (Figure 7), the computational

gain increases with the chain length. For 50,000 MH iterations, the speed-

up rate is about 1.42 (i.e. a 30% time gain), but pushing the computation

up to 1,000,000 runs provides an almost ideal speed-up of 1.9 (i.e. a gain

of about 50% similar to Figure 1). It is also interesting to note that for

this medium/large size model, even at very short chain length, the parallel

coding is always winning over the serial. Excluding the Metropolis from
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DYNARE execution (Figure 8), we can see that the speed-up rate of running

the posterior analysis in parallel on two cores reaches 1.6 (i.e. 38% of time

gain).

 12

 

 

Chains 
Length  

Time 
Serial  

Time 
Parallel
 

105  98  95
1005  398  255
5005  1463  890

10005  2985  1655
20005  4810  2815
30005  6630  4022
40005  7466  5246
50000  9263  6565

Table6.  Computational  Time  using  all  the  parallel  function  involved  and  the 
Open/Close strategy. 
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Figure 7: Computational Time (s) versus Metropolis length, running all the
parallelized functions in DYNARE and the basic parallel implementation
(the ‘Open/Close’ strategy). (Ratto et al., 2009).
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105  62  63
1005  285  198
5005  498  318

10005  798  488
20005  799  490
30005  781  518
40005  768  503
50005  823  511

100000  801  530
    

Table7. Computational Time without MH  and the Open/Close strategy. 
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Figure 8: Computational Time (s) versus Metropolis length, loading pre-
viously performed MH runs and running only the parallelized functions
after Metropolis (Ratto et al., 2009). Basic parallel implementation (the
‘Open/Close’ strategy).

41



 14

105 66 60
1005 273 117
5005 871 332

10005 1588 460
20005 2791 470
30005 3963 492
40005 5292 479
50000 6624 498

Table8. Computational Time with Always Open strategy. 
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 Figure 9: Comparison of the ‘Open/Close’ strategy and the ‘Always-open’

strategy. Computational Time (s) versus Metropolis length, running all the
parallelized functions in DYNARE (Ratto et al., 2009).

We also checked the efficacy of the ‘Always-open’ approach with respect

to the ‘Open/Close’ (Figures 9 and 10). We can see in Figure 9 that, running

the entire Bayesian analysis, no advantage can be appreciated from the more

sophisticated ‘Always-open’ approach.
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Test 5. 
 
The strong reduction in computational time allow us to compare the use within DSGE 
molling of two distict implementation of Metropolis Hasting Alghoritms: Independent 
and Random Wallking. 
Specifically, we execute the QUEST III models with: 
 
Random Walkin Metropolis Hasting 
 
Chains Lenght Number of Chais 
  
50.000 4 
100.000 2 
200.000 2 and 4 
400.000 3 
500.000 2 
1.000.000 2 
 
 
 
 
Independent Metropolis Hasting 

Figure 10: Comparison of the ‘Open/Close’ strategy and the ‘Always-open’
strategy. Computational Time (s) versus Metropolis length, running only
the parallelized functions after Metropolis (QUEST III model Ratto et al.,
2009).
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On the other hand, in Figure 10, we can see that the ‘Always-open’

approach still provides a small speed-up rate of about 1.03. These results

confirm the previous comment that the gain of the ‘Always-open’ strategy

is specially visible when the computational time spent in a single parallel

session is not too long, and therefore, the bigger the model size, the less the

advantage of this strategy.

5 Conclusions

The methodology identified for parallelizing MATLAB codes within DYNARE

proved to be effective in reducing the computational time of the most ex-

tensive loops. This methodology is suitable for ‘embarrassingly parallel’

codes, requiring only a minimal communication flow between slave and mas-

ter threads. The parallel DYNARE is built around a few ‘core’ routines, that

act as a sort of ‘parallel paradigm’. Based on those routines, parallelization

of expensive loops is made quite simple for DYNARE developers. A basic

message passing system is also provided, that allows the master thread to

monitor the progress of slave threads. The test model ls2003.mod is avail-

able in the folder \tests\parallel of the DYNARE distribution, that allows

running parallel examples.
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Figure 11: Prior (grey lines) and posterior density of estimated parameters
(black = 100,000 runs; red = 1,000,000 runs) using the RWMH algorithm
(QUEST III model Ratto et al., 2009).
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Figure 12: Prior (grey lines) and posterior density of estimated parameters
(black = 100,000 runs; red = 1,000,000 runs) using the RWMH algorithm
(QUEST III model Ratto et al., 2009).
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Figure 13: Prior (grey lines) and posterior density of estimated parameters
(black = 100,000 runs; red = 1,000,000 runs) using the RWMH algorithm
(QUEST III model Ratto et al., 2009).
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Figure 14: Prior (grey lines) and posterior density of estimated parameters
(black = 100,000 runs; red = 1,000,000 runs) using the RWMH algorithm
(QUEST III model Ratto et al., 2009).
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Figure 15: Prior (grey lines) and posterior density of estimated parameters
(black = 100,000 runs; red = 1,000,000 runs) using the RWMH algorithm
(QUEST III model Ratto et al., 2009).
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Figure 16: Prior (grey lines) and posterior density of estimated parameters
(black = 100,000 runs; red = 1,000,000 runs) using the RWMH algorithm
(QUEST III model Ratto et al., 2009).
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A A tale on parallel computing

This is a general introduction to Parallel Computing. Readers can skip it,

provided they have a basic knowledge of DYNARE and Computer Program-

ming (Goffe and Creel, 2008; Azzini et al., 2007; ParallelDYNARE, 2009).

There exists an ample scientific literature as well as an enormous quantity of

information on the Web, about parallel computing. Sometimes, this amount

of information may result ambiguous and confusing in the notation adopted

and the description of technologies. Then main the goal here is therefore

to provide a very simple introduction to this subject, leaving the reader to

Brookshear (2009) for a more extensive and clear introduction to computer

science.

Modern computer systems (hardware and software) is conceptually iden-

tical to the first computer developed by J. Von Neumann. Nevertheless, over

time, hardware, software, but most importantly hardware & software together

have acquired an ever increasing ability to perform incredibly complex and

intensive tasks. Given this complexity, we use to explain the modern com-

puter systems as the “avenue paradigm”, that we summarize in the next

tale.

Nowadays there is a small but lovely town called “CompuTown”. In

CompuTown there are many roads, which are all very similar to each other,

and also many gardens. The most important road in CompuTown is the Von

Neumann Avenue. The first building in Von Neumann Avenue has three

floors (this is a computer system: PC, workstation, etc.; see Figure 18 and

Brookshear (2009)). Floors communicate between them only with a single
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define a set of word, fixed and understood by all: the Programming Languages. 

More specifically we call these high-level programming languages (java, c, 

matlab …), because are relating with people who are on the upper floors of the 

building! 

 

 Second floor: the user programs … 

 

First floor:  
the Operating System  
… 

Ground floor:  
the Hardware  … 

Figure 1. The first building in Von Neumann Avenue: a Computer System

 

In identical way the people in the first floor communicate with the people in 

ground floor. Obviously here people use to communicate low-level 

programming languages (assembler, binary code, machine language …). 

But, most important, people in first floor must also to manage and coordinate the 

requests for people in the ground floor made by the people on the second floor, 

and for example translate and high-level programming languages into binary 

code1: the Operating System.  

Sometimes people are put on the second floor to talk directly with people on the 

ground floor: the system calls. In our software we use frequently system call to 

                                                 
1 The process to transform an high-level programming languages in to binary code is called compilation 
process. 

 2

Figure 18: The first building in Von Neumann Avenue: a Computer System

stair. In each floor there are people coming from the same country, with the

same language, culture and uses. People living, moving and interacting with

each other in the first and second floor are the programs or software agents or,

more generally speaking, algorithms (see chapters 3, 5, 6 and 7 in Brookshear

(2009)). Examples of the latter are the softwares MATLAB, Octave, and a

particular program called the operating system (Windows, Linux, Mac OS,

etc.).

People at the ground floor are the transistors, the RAM, the CPU, the

hard disk, etc. (i.e. the Computer Architecture, see chapters 1 and 2 in

Brookshear). People at the second floor communicate with people at the

first floor using the only existing scale (the pipe). In these communica-

tions, people talk two different languages, and therefore do not understand

each other. To remove this problem people define a set of words, fixed and

understood by everybody: the Programming Languages. More specifically,
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these languages are called high-level programming languages (Java, C/C++,

FORTRAN,MATLAB, etc.), because they are related to people living on

the upper floors of the building! Sometimes people in the building use also

pictures to communicate: the icons and graphical user interface.

In a similar way, people at the first floor communicate with people at the

ground floor. Not surprisingly, in this case, people use low-level programming

languages to communicate to each other (assembler, binary code, machine

language, etc.). More importantly, however, people at the first floor must also

manage and coordinate the requests from people on the second floor to people

at the ground floor, since there is no direct communication between ground

and second floor. For example they need to translate high-level programming

languages into binary code3: the Operating System performs this task.

Sometimes, people at the second floor try to talk directly with people at

the ground floor, via the system calls. In the parallelizing software presented

in this document, we will use frequently these system calls, to distribute the

jobs between the available hardware resources, and to coordinate the overall

parallel computational process. If only a single person without family lives

on the ground floor, such as the porter, we have a CPU single core. In this

case, the porter can only do one task at a time for the people in first or

second floor (the main characteristic of the Von Neumann architecture). For

example, in the morning he first collects and sorts the mail for the people

in the building, and only after completing this task he can take care of the

garden. If the porter has to do many jobs, he needs to write in a paper the list

3The process to transform an high-level programming languages into binary code is
called compilation process.
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of things to do: the memory and the CPU load. Furthermore, to properly

perform its tasks, sometimes the porter has to move some objects trough

the passageways at the ground floor (the System Bus). If the passageways

have standard width, we will have a 32 bits CPU architecture (or bus). If

the passageways are very large we will have, for example, a 64 bits CPU

architecture (or bus). In this scenario, there will be very busy days where

many tasks have to be done and many things have to be moved around: the

porter will be very tired, although he will be able to ‘survive’. The most

afflicted are always the people at the first floor. Every day they have a lot of

new, complex requests from the people at the second floor. These requests

must be translated in a correct way and passed to the porter. The people at

the second floor (the highest floor) “live in cloud cuckoo land”. These people

want everything to be done easily and promptly: the artificial intelligence,

robotics, etc. The activity in the building increases over time, so the porter

decides to get helped in order to reduce the execution time for a single job.

There are two ways to do this:

• the municipality of CompuTown interconnects all the buildings in the

city using roads, so that the porter can share and distribute the jobs

(the Computer Networks): if the porters involved have the same na-

tionality and language we have a Computer Cluster, otherwise we have

a Grid. Nevertheless, in both cases, it is necessary to define a correct

way in which porters can manage, share and complete a shared job:

the communication protocol (TCP/IP, internet protocol, etc.);

• the building administrator employs an additional porter, producing a
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Bi-Processor Computer. In other case, the porter may get married,

producing a dual-core CPU. In this case, the wife can help the porter

to perform his tasks or even take entirely some jobs for her (for example

do the accounting, take care of the apartment, etc.). If the couple has

a children, they can have a further little help: the thread and then the

Hyper-threading technology.

Now a problem arises: who should coordinate the activities between the

porters (and their family) and between the other buildings? Or, in other

words, should we refurbish the first and second floors to take advantage of

the innovations on the ground floor and of the new roads in CompuTown?

First we can lodge new persons at the first floor: the operating systems with

a set of network tools and multi-processors support, as well as new people at

the second floor with new programming paradigms (MPI, OpenMP, Parrallel

DYNARE, etc.). Second, a more complex communication scheme between

first and ground floor is necessary, building a new set of stairs. So, for

example, if we have two stairs between ground and first floor and two porters,

using multi-processors and a new parallel programming paradigm, we can

assign jobs to each porter directly and independently, and then coordinate

the overall work. In parallel DYNARE we use this kind of ‘refurbishing’

to reduce the computational time and to meet the request of people at the

second floor.

Unfortunately, this is only an idealized scenario, where all the citizens

in CompuTown live in peace and cooperate between them. In reality, some

building occupants argue with each other and this can cause stopping their

job: these kinds of conflicts may be linked to software and hardware com-
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patibility (between ground and first floor), or to different software versions

(between second and first floor). The building administration or the munic-

ipality of CompuTown have to take care of these problems an fix them, to

make the computer system operate properly.

This tale (that can be also called The Programs’s Society) covered in a

few pages the fundamental ideas of computer science.
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