Parallel DYNARE Toolbox
FP7 Funded
Project MONFISPOL Grant no.: 225149

Marco Ratto

European Commission, Joint Research Centre, Ispra, ITALY

February 12, 2018

Contents
1 The ideas implemented in Parallel DYNARE
2 The DYNARE environment

3 Installation and utilization

3.1 Requirements L
3.1.1 ForaWindows grid
312 ForaUNIX grid
3.2 The user perspective
3.2.1 Theinterface
3.2.2 Preprocessing cluster settings oL

3.2.3 Example syntax for Windows and Unix, for local parallel runs (as-
suming quad-core)
3.2.4 Examples of Windows syntax for remote runs
3.2.5 Example Unix syntax for remote runs
3.2.6 Testing thecluster
3.3 The Developers perspective L 0o
3.3.1 Write a parallel code: an example, ...

4 Parallel DYNARE: testing
4.1 Test 1. . . o o o e
4.2 Test 2. . . . e e
4.3 Test 3 e e
4.4 Test 4 . . . e

5 Conclusions

A A tale on parallel computing

14
14
18
19
21
27

32
32
34
37
40

43

50

Abstract

In this document, we describe the basic ideas and the methodology
identified to realize the parallel package within the DYNARE project
(called the “Parallel DYNARE” hereafter) and its algorithmic per-
formance. The parallel methodology has been developed taking into
account two different perspectives: the “User perspective” and the
“Developers perspective”. The fundamental requirement of the “User
perspective” is to allow DYNARE users to use the parallel routines
easily, quickly and appropriately. Under the “Developers perspective”,
on the other hand, we need to build a core of parallelizing routines
that are sufficiently abstract and modular to allow DYNARE software
developers to use them easily as a sort of ‘parallel paradigm’, for ap-
plication to any DYNARE routine or portion of code containing com-
putational intensive loops suitable for parallelization. We will finally

show tests showing the effectiveness of the parallel implementation.

1 The ideas implemented in Parallel DYNARE

The basic idea behind “Parallel Dynare” is to build a framework to paral-
lelize portions of code that require a minimal (i.e. start-end communication)
or no communications between different processes, denoted in the litera-
ture as “embarrassingly parallel” (Goffe and Creel, 2008; Barney, 2009). In
more complicated cases there are different and more sophisticated solutions
to write (or re-write) parallel codes using, for example, OpenMP or MPI.
Within DYNARE, we can find many portions of code with the above fea-
tures: loops of computational sequences with no interdependency that are
coded sequentially. Clearly, this does not make optimal use of computers
having 2-4-8, or more cores or CPUs. The basic idea is to assign the differ-
ent and independent computational sequences to different cores, CPU’s or
computers and coordinating this new distributed computational environment

with the following criteria:

e provide the necessary input data to any sequence, possibly including
results obtained from previous DYNARE sessions (e.g. a first batch of

Metropolis iterations);

e distribute the workload, automatically balancing between the compu-

tational resources;
e collect the output data;

e ensure the coherence of the results with the original sequential execu-

tion.

Generally, during a program execution, the largest computational time is
spent to execute nested cycles. For simplicity and without loss in generality
we can consider here only for cycles (it is possible to demonstrate that any
while cycle admits an equivalent for cycle). Then, after identifying the
most computationally expensive for cycles, we can split their execution (i.e.
the number or iterations) between different cores, CPUs, computers. For

example, consider the following simple MATLAB piece of code:

n=2;

m=10"6;

Matrix= zeros(n,m);

for i=1:n,
Matrix(i,:)=rand(1,m);

end,

Mse= Matrix;

Example 1

With one CPU this cycle is executed in sequence: first for i=1, and then
for i=2. Nevertheless, these 2 iterations are completely independent. Then,
from a theoretical point of view, if we have two CPUs (cores) we can rewrite

the above code as:

n=2;
m=10"6;
<provide to CPUl and CPU2 input data m>

<Execute on CPU1> <Execute on CPU2>
Matrixl = zeros(1,m); Matrix2 = zeros(1,m);
Matrix1(1,:)=rand(1,m); Matrix2(1, :)=rand(1,m);
save Matrixil save Matrix2

retrieve Matrixl and Matrix2
Mpe(1l,:) = Matrixl;
Mpe(2,:) = Matrix2;

Example 2

The for cycle has disappeared and it has been split into two separated
sequences that can be executed in parallel on two CPUs. We have the same

result (Mpa=Mse) but the computational time can be reduced up to 50%.

2 The DYNARE environment

We have considered the following DYNARE components suitable to be par-

allelized using the above strategy:

1. the Random Walk- (and the analogous Independent-)-Metropolis-Hastings
algorithm with multiple chains: the different chains are completely in-
dependent and do not require any communication between them, so it

can be executed on different cores/CPUs/Computer Network easily;

2. a number of procedures performed after the completion of Metropolis,

that use the posterior MC sample:

(a) the diagnostic tests for the convergence of the Markov Chain

(McMCDiagnostics.m);
(b) the function that computes posterior IRF’s (posteriorIRF.m).

(c) the function that computes posterior statistics for filtered and
smoothed variables, forecasts, smoothed shocks, etc..

(prior_posterior_statistics.m).

(d) the utility function that loads matrices of results and produces

plots for posterior statistics (pm3.m).

Unfortunately, MATLAB does not provide commands to simply write
parallel code as in Example 2 (i.e. the pseudo-commands : <provide inputs>,
<execute on CPU> and <retrieve>). In other words, MATLAB does not
allow concurrent programming: it does not support multi-threads, without
the use (and purchase) of MATLAB Distributed Computing Toolbox. Then,
to obtain the behavior described in Example 2, we had to find an alternative
solution.

The solution that we have found can be synthesized as follows:

When the execution of the code should start in parallel (as in Ez-
ample 2), instead of running it inside the active MATLAB ses-

sion, the following steps are performed:
1. the control of the execution is passed to the operating system
(Windows/Linuz) that allows for multi-threading;

2. concurrent threads (i.e. MATLAB instances) are launched

on different processors/cores/machines;

3. when the parallel computations are concluded the control is
giwen back to the original MATLAB session that collects the
result from all parallel ‘agents’ involved and coherently con-

tinue along the sequential computation.

Three core functions have been developed implementing this behavior,
namely MasterParallel.m, slaveParallel.m and fParallel.m. The first
function (MasterParallel.m) operates at the level of the ‘master’ (original)
thread and acts as a wrapper of the portion of code to be distributed in
parallel, distributes the tasks and collects the results from the parallel com-
putation. The other functions (slaveParallel.m and fParallel.m) operate
at the level of each individual ‘slave’ thread and collect the jobs distributed
by the ‘master’, execute them and make the final results available to the
master. The two different implementations of slave operation comes from
the fact that, in a single DYNARE session, there may be a number paral-
lelized sessions that are launched by the master thread. Therefore, those two

routines reflect two different versions of the parallel package:

1. the ‘slave’” MATLAB sessions are closed after completion of each single
job, and new instances are called for any subsequent parallelized task

(fParallel.m);

2. once opened, the ‘slave’ MATLAB sessions are kept open during the
DYNARE session, waiting for the jobs to be executed, and are only

closed upon completion of the DYNARE session on the ‘master’ (slaveParallel.m).

We will see that none of the two options is superior to the other, depending

on the model size.

3 Installation and utilization

Here we describe how to run parallel sessions in DYNARE and, for the devel-
opers community, how to apply the package to parallelize any suitable piece

of code that may be deemed necessary.

3.1 Requirements
3.1.1 For a Windows grid

1. a standard Windows network (SMB) must be in place;

2. PsTools (Russinovich, 2009) must be installed in the path of the master

Windows machine;

3. the Windows user on the master machine has to be user of any other
slave machine in the cluster, and that user will be used for the remote

computations.

3.1.2 For a UNIX grid

1. SSH must be installed on the master and on the slave machines;

2. the UNIX user on the master machine has to be user of any other
slave machine in the cluster, and that user will be used for the remote

computations;

3. SSH keys must be installed so that the SSH connection from the master

to the slaves can be done without passwords, or using an SSH agent.

3.2 The user perspective

We assume here that the reader has some familiarity with DYNARE and its
use. For the DYNARE users, the parallel routines are fully integrated and
hidden inside the DYNARE environment.

3.2.1 The interface

The general idea is to put all the configuration of the cluster in a config file
different from the MOD file, and to trigger the parallel computation with
option(s) on the dynare command line. The configuration file is designed as

follows:
e be in a standard location

— $HOME/.dynare under Unix;

— c:\Documents and Setting\<username>\Application Data\dynare.ini on

Windows;

e have provisions for other Dynare configuration parameters unrelated to

parallel computation
e allow to specify several clusters, each one associated with a nickname;

e For each cluster, specify a list of slaves with a list of options for each
slave [if not explicitly specified by the configuration file, the preproces-

sor sets the options to default];
The list of slave options includes:

Name : name of the node;

CPUnbr : this is the number of CPU’s to be used on that computer; if
CPUnbr is a vector of integers, the syntax is [s:d], with d>=s (d, s
are integer); the first core has number 1 so that, on a quad-core, use 4
to use all cores, but use [3:4]to specify just the last two cores (this is
particularly relevant for Windows where it is possible to assign jobs to

specific processors);

ComputerName : Computer name on the network or IP address; use the

NETBIOS name under Windows!, or the DNS name under Unix.;

UserName : required for remote login; in order to assure proper communi-
cations between the master and the slave threads, it must be the same
user name actually logged on the ‘master’ machine. On a Windows
network, this is in the form DOMAIN\username, like DEPT\JohnSmith,

i.e. user JohnSmith in windows group DEPT;

Password : required for remote login (only under Windows): it is the user

password on DOMAIN and ComputerName;

RemoteDrive : Drive to be used on remote computer (only for Windows,

for example the drive C or drive D);

RemoteDirectory : Directory to be used on remote computer, the parallel
toolbox will create a new empty temporary subfolder which will act as

remote working directory;

'In Windows XP it is possible find this name in "My Computer’ — > mouse right click
— > 'Property’ — > ’Computer Name’.

10

DynarePath : path to matlab directory within the Dynare installation

directory;
MatlabOctavePath : path to MATLAB or Octave executable;
SingleCompThread : disable MATLAB’s native multithreading;

Those options have the following specifications:

Node Options type default Win Unix
Local | Remote | Local | Remote

Name string (stop) | * * * *

CPUnbr integer | (stop) | * * * *
or array

ComputerName string (stop) *

UserName string empty *

Password string empty *

RemoteDrive string empty *

RemoteDirectory string empty * *

DynarePath string empty

MatlabOctavePath | string empty

SingleCompThread | boolean | true

The cluster options are as follows

Cluster Options | type default | Meaning Required
Name string | empty | name of the node *
Members string | empty | list of members in this cluster | *

The syntax of the configuration file will take the following form (the order

in which the clusters and nodes are listed is not significant):

11

[cluster]
Name = c1
Members = nl n2 n3

[cluster]
Name = c2
Members = n2 n3

[node]

Name = nl

ComputerName = localhost
CPUnbr = 1

[node]

Name = n2

ComputerName = karaba.cepremap.org
CPUnbr = 5

UserName = houtanb

RemoteDirectory = /home/houtanb/Remote
DynarePath = /home/houtanb/dynare/matlab
MatlabOctavePath = matlab

[node]

Name = n3

ComputerName = hal.cepremap.ens.fr
CPUnbr = 3

UserName = houtanb

RemoteDirectory = /home/houtanb/Remote
DynarePath = /home/houtanb/dynare/matlab
MatlabOctavePath = matlab

Finally, the DYNARE command line options are:

e conffile=<path>: specify the location of the configuration file if it is

not standard

e parallel: trigger the parallel computation using the first cluster spec-

ified in config file

e parallel=<clustername>: trigger the parallel computation, using the

12

given cluster

e parallel_slave_open_mode: use the leaveSlaveOpen mode in the clus-

ter

e parallel_test: just test the cluster, dont actually run the MOD file

3.2.2 Preprocessing cluster settings

The DYNARE pre-processor treats user-defined configurations by filling a
new sub-structure in the options_ structure, named parallel, with the

following fields:

options_.parallel=
struct(’Local’, Value,
’ComputerName’, Value,
’CPUnbr’, Value,
’UserName’, Value,
’Password’, Value,
’RemoteDrive’, Value,
’RemoteFolder’, Value,
’MatlabOctavePath’, Value,
’DynarePath’, Value);

All these fields correspond to the slave options except Local, which is set

by the pre-processor according to the value of ComputerName:

Local: the variable Local is binary, so it can have only two values 0 and 1.
If ComputerName is set to localhost, the preprocessor sets Local = 1
and the parallel computation is executed on the local machine, i.e.
on the same computer (and working directory) where the DYNARE
project is placed. For any other value for ComputerName, we will have

Local = 0;

13

In addition to the parallel structure, which can be in a vector form, to
allow specific entries for each slave machine in the cluster, there is another
options_ field, called parallel_info, which stores all options that are com-
mon to all cluster. Namely, according to the parallel_slave_open_mode in

the command line, the leaveSlaveOpen field takes values:

leaveSlaveOpen=1 : with parallel_slave_open_mode, i.e. the slaves op-

erate ‘Always-Open’.
leaveSlaveOpen=0 : without parallel_slave_open_mode, i.e. the slaves
operate ‘Open-Close’;
3.2.3 Example syntax for Windows and Unix, for local parallel
runs (assuming quad-core)

In this case, the only slave options are ComputerName and CPUnbr.

[cluster]
Name = local
Members = nl

[node]

Name = nl

ComputerName = localhost
CPUnbr = 4

3.2.4 Examples of Windows syntax for remote runs

e the Windows Password has to be typed explicitly;

e RemoteDrive has to be typed explicitly;

14

e for UserName, ALSO the group has to be specified, like DEPT\ JohnSmith,

i.e. user JohnSmith in windows group DEPT;

e ComputerName is the name of the computer in the windows network,

i.e. the output of hostname, or the full IP address.

Example 1 Parallel codes that are run on a remote computer named vonNeumann
with eight cores, using only the cores 4,5,6, working on the drive 'C’
and folder 'dynare_calcs\Remote’. The computer vonNeumann is in a
net domain of the CompuTown university, with user John logged with

the password x***x:

[cluster]
Name = vonNeumann
Members = n2

[node]

Name = n2

ComputerName = vonNeumann

CPUnbr = [4:6]

UserName = COMPUTOWN\John

Password = ***xx

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote
DynarePath = c:\dynare\matlab
MatlabOctavePath = matlab

Example 2 We can build a cluster, combining local and remote runs. For
example the following configuration file includes the two previous con-
figurations but also gives the possibility (with cluster name c2) to build

a grid with a total number of 7 CPU’s :

15

[cluster]
Name = local
Members = nl

[cluster]
Name = vonNeumann
Members = n2

[cluster]
Name = c2
Members = nl1 n2

[node]

Name = nl

ComputerName = localhost
CPUnbr = 4

[nodel

Name = n2

ComputerName = vonNeumann

CPUnbr = [4:6]

UserName = COMPUTOWN\John

Password = s¥xxx

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote
DynarePath = c:\dynare\matlab
MatlabOctavePath = matlab

Example 3 We can build a cluster, combining many remote machines. For
example the following commands build a grid of four machines with a

total number of 14 CPU’s:

16

[cluster]
Name = c4
Members = nl n2 n3 n4

[node]

Name = nl

ComputerName = vonNeumannl

CPUnbr = 4

UserName = COMPUTOWN\John

Password = ***xx

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote
DynarePath = c:\dynare\matlab
MatlabOctavePath = matlab

[node]

Name = n2

ComputerName = vonNeumann2

CPUnbr = 4

UserName = COMPUTOWN\John

Password = ***x*

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote
DynarePath = c:\dynare\matlab
MatlabOctavePath = matlab

[node]

Name = n3

ComputerName = vonNeumann3

CPUnbr = 2

UserName = COMPUTOWN\John

Password = ***%*

RemoteDrive = D

RemoteDirectory = dynare_calcs\Remote
DynarePath = c:\dynare\matlab
MatlabOctavePath = matlab

[node]

Name = n4

ComputerName = vonNeumann4

CPUnbr = 4

UserName = COMPUTOWN\John

Password = ***x*

RemoteDrive = C

RemoteDirectory = John\dynare_calcs\Remote
DynarePath = c:\dynare\matlab
MatlabOctavePath = matlab

17

3.2.5 Example Unix syntax for remote runs

e no Password and RemoteDrive fields are needed;

e ComputerName is the full IP address or the DNS address.

One remote slave: the following command defines remote runs on the ma-
chine name.domain.org.

[cluster]
Name = unixl
Members = n2

[node]

Name = n2

ComputerName = name.domain.org

CPUnbr = 4

UserName = JohnSmith

RemoteDirectory = /home/john/Remote
DynarePath = /home/john/dynare/matlab
MatlabOctavePath = matlab

Combining local and remote runs: the following commands define a clus-
ter of local an remote CPU’s.

18

[cluster]
Name = unix?2
Members = nl n2

[node]

Name = nl

ComputerName = localhost
CPUnbr = 4

[node]

Name = n2

ComputerName = name.domain.org

CPUnbr = 4

UserName = JohnSmith

RemoteDirectory = /home/john/Remote
DynarePath = /home/john/dynare/matlab
MatlabOctavePath = matlab

3.2.6 Testing the cluster

In this section we describe what happens when the user omits a mandatory
entry or provides bad values for them and how DYNARE reacts in these cases.

In the parallel package there is a utility (AnalyseComputationalEnvironment .m)
devoted to this task (this is triggered by the command line option parallel_test).
When necessary during the discussion, we use the parallel entries used in

the previous examples.

ComputerName: If Local=0, DYNARE checks if the computer vonNeumann
exists and if it is possible communicate with it. If this is not the case,

an error message is generated and the computation is stopped.

CPUnbr: a value for this variable must be in the form [s:d] with d>=s. If
the user types values s>d, their order is flipped and a warning message

is sent. When the user provides a correct value for this field, DYNARE

19

checks if d CPUs (or cores) are available on the computer. Suppose

that this check returns an integer nC. We can have three possibilities:

1. nC= d; all the CPU’s available are used, no warning message are

generated by DYNARE;
2. nC> d; some CPU’s will not be used;

3. nC< d; DYNARE alerts the user that there are less CPU’s than
those declared. The parallel tasks would run in any case, but
some CPU’s will have multiple instances assigned, with no gain in

computational time.

UserName & Password: if Local = 1, no information about user name
and password is necessary: “I am working on this computer”. When
remote computations on a Windows network are required, DYNARE
checks if the user name and password are correct, otherwise execution
is stopped with an error; for a Unix network, the user and the proper

operation of SSH is checked;

RemoteDrive & RemoteDirectory: if Local = 1, these fields are not re-
quired since the working directory of the ‘slaves’ will be the same of the
‘master’. If Local = 0, DYNARE tries to copy a file (Tracing.txt)
in this remote location. If this operation fails, the DYNARE execution

is stopped with an error;

MatlabOctavePath & DynarePath: MATLAB instances are tried on slaves
and the DYNARE path is checked.

20

3.3 The Developers perspective

In this section we describe with some accuracy the DYNARE parallel rou-

tines.

Windows: With Windows operating system, the parallel package requires
the installation of a free software package called PsTools (Russinovich,
2009). PsTools suite is a resource kit with a number of command line
tools that mimics administrative features available under the Unix en-
vironment. PsTools can be downloaded from Russinovich (2009) and
extracted in a Windows directory on your computer: to make PsTools
working properly, it is mandatory to add this directory to the Win-
dows path. After this step it is possible to invoke and use the PsTools
commands from any location in the Windows file system. PsTools,
MATLAB and DYNARE have to be installed and work properly on all

the machines in the grid for parallel computation.

Unix: With Unix operating system, SSH must be installed on the master
and on the slave machines. Moreover, SSH keys must be installed so
that the SSH connections from the master to the slaves can be done

without passwords.

As soon as the computational environment is set-up for working on a grid
of CPU’s, the parallel package allows to parallelize any loop that is compu-
tationally expensive, following the step by step procedure showed in Table
1. This is done using five basic functions: masterParallel.m, fParallel.m

or slaveParallel.m, fMessageStatus.m, closeSlave.m.

21

masterParallel is the entry point to the parallelization system:

e [t is called from the master computer, at the point where the par-
allelization system should be activated. Its main arguments are
the name of the function containing the task to be run on every
slave computer, inputs to that function stored in two structures
(one for local and the other for global variables), and the con-
figuration of the cluster; this function exits when the task has
finished on all computers of the cluster, and returns the output in

a structure vector (one entry per slave);

e all file exchange through the filesystem is concentrated in this
masterParallel routine: so it prepares and send the input infor-
mation for slaves, it retrieves from slaves the info about the status
of remote computations stored on remote slaves by the remote pro-
cesses; finally it retrieves outputs stored on remote machines by

slave processes;

e there are two modes of parallel execution, triggered by option

parallel_slave_open_mode:

— when parallel_slave_open_mode=0, the slave processes are
closed after the completion of each task, and new instances
are initiated when a new job is required; this mode is managed

by fParallel.m [‘Open-Close’];

— when parallel_slave_open_mode=1, the slave processes are
kept running after the completion of each task, and wait for

new jobs to be performed; this mode is managed by slaveParallel.m

22

[‘Always-Open’];

slaveParallel.m/fParallel.m: are the top-level functions to be run on
every slave; their main arguments are the name of the function to be run
(containing the computing task), and some information identifying the
slave; the functions use the input information that has been previously
prepared and sent by masterParallel through the filesystem, call the
computing task, finally the routines store locally on remote machines
the outputs such that masterParallel retrieves back the outputs to

the master computer;

fMessageStatus.m: provides the core for simple message passing during
slave execution: using this routine, slave processes can store locally
on remote machine basic info on the progress of computations; such in-
formation is retrieved by the master process (i.e. masterParallel.m)
allowing to echo progress of remote computations on the master; the
routine fMessageStatus.m is also the entry-point where a signal of in-
terruption sent by the master can be checked and executed; this routine

typically replaces calls to waitbar.m;

closeSlave.m is the utility that sends a signal to remote slaves to close
themselves. In the standard operation, this is only needed with the
‘Always-Open’ mode and it is called when DYNARE computations
are completed. At that point, slaveParallel.m will get a signal to
terminate and no longer wait for new jobs. However, this utility is
also useful in any parallel mode if, for any reason, the master needs to

interrupt the remote computations which are running;

23

The parallel toolbox also includes a number of utilities:

e AnalyseComputationalEnviroment.m: this a testing utility that checks
that the cluster works properly and echoes error messages when prob-

lems are detected;

e InitializeComputationalEnviroment.m : initializes some internal

variables and remote directories;

e distributeJobs.m: uses a simple algorithm to distribute evenly jobs

across the available CPU’s;

e a number of generalized routines that properly perform delete, copy,
mkdir, rmdir commands through the network file-system (i.e. used
from the master to operate on slave machines); the routines are adap-
tive to the actual environment (Windows or Unix);
dynareParallelDelete.m : generalized delete;

dynareParallelDir.m : generalized dir;

dynareParallelGetFiles.m : generalized copy FROM slaves TO mas-

ter machine;
dynareParallelMkDir.m : generalized mkdir on remote machines;
dynareParallelRmDir.m : generalized rmdir on remote machined;
dynareParallelSendFiles.m : generalized copy TO slaves FROM

master machine;

In Table 1 we have synthesized the main steps for parallelizing MATLAB

codes.

24

. locate within DYNARE the portion of code suitable to be parallelized,
i.e. an expensive cycle for;

. suppose that the function tuna.m contains a cycle for that is suitable
for parallelization: this cycle has to be extracted from tuna.m and put
it in a new MATLAB function named tuna_core.m;

. at the point where the expensive cycle should start, the function
tuna.m invokes the utility masterParallel.m, passing to it the
options_.parallel structure, the name of the of the function to be
run in parallel (tuna_core.m), the local and global variables needed
and all the information about the files (MATLAB functions *.m; data
files * .mat) that will be handled by tuna_core.m;

. the function masterParallel.m reads the input arguments provided
by tuna.m and:

e decides how to distribute the task evenly across the avail-
able CPU’s (using the utility routine distributeJobs.m); pre-
pares and initializes the computational environment (i.e. copy
files/data) for each slave machine;

e uses the PsTools and the Operating System commands to launch
new MATLAB instances, synchronize the computations, monitor
the progress of slave tasks through a simple message passing sys-
tem (see later) and collect results upon completion of the slave
threads;

. the slave threads are executed using the MATLAB functions
fParallel.m/slaveParallel.m as wrappers for implementing the
tasks sent by the master (i.e. to run the tuna_core.m routine);

. the utility fMessageStatus.m can be used within the core routine
tuna_core.m to send information to the master regarding the progress
of the slave thread;

. when all DYNARE computations are completed, closeSlave.m closes
all open remote MATLAB/OCTAVE instances waiting for new jobs to
be run.

Table 1: Procedure for parallelizing portions of codes.

25

So far, we have parallelized the following functions, by selecting the most

computationally intensive loops:

1. the cycle looping for multiple chain random walk Metropolis:
random_walk_metropolis_hastings,

random_walk_metropolis_hastings_core;

2. the cycle looping for multiple chain independent Metropolis:
independent_metropolis_hastings.m,

independent_metropolis_hastings_core.m;

3. the cycle looping over estimated parameters computing univariate di-
agnostics:
McMCDiagnostics.m,

McMCDiagnostics_core.m;

4. the Monte Carlo cycle looping over posterior parameter subdraws per-
forming the IRF simulations (<*>_corel) and the cycle looping over
exogenous shocks plotting IRF’s charts (<*x>_core2):
posteriorIRF.m,

posteriorIRF_corel.m, posteriorIRF_core2.m;

5. the Monte Carlo cycle looping over posterior parameter subdraws, that
computes filtered, smoothed, forecasted variables and shocks:
prior_posterior_statistics.m,

prior_posterior_statistics_core.m;

6. the cycle looping over endogenous variables making posterior plots of

filter, smoother, forecasts: pm3.m, pm3_core.m.

26

3.3.1 Write a parallel code: an example

Using a MATLAB pseudo (but very realistic) code, we now describe in detail
how to use the above step by step procedure to parallelize the random walk
Metropolis Hastings algorithm. Any other function can be parallelized in the
same way.

It is obvious that most of the computational time spent by the
random_walk_metropolis_hastings.m function is given by the cycle loop-

ing over the parallel chains performing the Metropolis:

function random_walk_metropolis_hastings
(TargetFun, ProposalFun, ..., varargin)

[...]
for b = fblck:nblck,

end

[...]

Since those chains are totally independent, the obvious way to reduce the
computational time is to parallelize this loop, executing the (nblck-fblck)
chains on different computers/CPUs/cores.

To do so, we remove the for cycle and put it in a new function named

<*>_core.m:

27

function myoutput =
random_walk_metropolis_hastings_core(myinputs,fblck,nblck, ...)

[...]

just list global variables needed (they are set-up properly by fParallel or slaveParallel)
global bayestopt_ estim_params_ options_ M_ oo_

here we collect all local variables stored in myinputs

TargetFun=myinputs.TargetFun;
ProposalFun=myinputs.ProposalFun;
xparaml=myinputs.xparaml;

[...]

here we run the loop

for b = fblck:nblck,

end

[...]
here we wrap all output arguments needed by the ‘master’ routine

myoutput.record = record;

[...]

The split of the for cycle has to be performed in such a way that the new
<x>_core function can work in both serial and parallel mode. In the latter
case, such a function will be invoked by the slave threads and executed for
the number of iterations assigned by masterParallel.m.

The modified random_walk_metropolis_hastings.m is therefore:

28

function random_walk_metropolis_hastings(TargetFun,ProposalFun, ,varargin)
[...]

% here we wrap all local variables needed by the <*>_core function
localVars = struct(’TargetFun’, TargetFun,

[...]
’d’, d);
[...]
% here we put the switch between serial and parallel computation:
if isnumeric(options_.parallel) || (nblck-fblck)==0,

% serial computation
fout = random_walk_metropolis_hastings_core(localVars, fblck,nblck, 0);
record = fout.record;

else
% parallel computation

% global variables for parallel routines
globalVars = struct(’M_’,M_,
[...]

’00_’, o00_);

% which files have to be copied to run remotely
NamFileInput(l,:) = {’’,[ModelName ’_static.m’]};
NamFileInput(2,:) = {’’, [ModelName ’_dynamic.m’]};
[...]

% call the master parallelizing utility

[fout, nBlockPerCPU, totCPU] = masterParallel(options_.parallel,
fblck, nblck, NamFileInput, ’random_walk_metropolis_hastings_core’,
localVars, globalVars, options_.parallel_info);

% collect output info from parallel tasks provided in fout
[...]

end

% collect output info from either serial or parallel tasks
irun = fout(1l).irun;

NewFile = fout(l) .NewFile;

[...]

Finally, in order to allow the master thread to monitor the progress of the

slave threads, some message passing elements have to be introduced in the

29

<*>_core.mn file. The utility function fMessageStatus.m has been designed
as an interface for this task, and can be seen as a generalized form of the

MATLAB utility waitbar.m.
In the following example, we show a typical use of this utility, again from
the random walk Metropolis routine:

for j = 1l:nruns

[...]

% define the progress of the loop:
prtfrc = j/nruns;

% define a running message:

% first indicate which chain is running on the current CPU [b]
% out of the chains [mh_nblock] requested by the DYNARE user
waitbarString = [’(° int2str(b) ’/’ int2str(mh_nblck) ’)

% then add possible further information, like the acceptation rate
> sprintf (°%f done, acceptation rate %f’,prtfrc,isux/j)]

if mod(j, 3)==0 & “whoiam
% serial computation
waitbar(prtfrc,hh,waitbarString);

elseif mod(j,50)==0 & whoiam,
% parallel computation
fMessageStatus (prtfrc,
whoiam,
waitbarString,
waitbarTitle,
options_.parallel(ThisMatlab))

end

end

In the previous example, a number of arguments are used to identify which
CPU and which computer in the claster is sending the message, namely:

30

% whoiam [int] index number of this CPU among all CPUs in the

) cluster

% ThisMatlab [int] index number of this slave machine in the cluster
% (entry in options_.parallel)

The message is stored as a MATLAB data file *.mat saved on the working
directory of remote slave computer. The master will will check periodically
for those messages and retrieve the files from remote computers and produce
an advanced monitoring plot.

So, assuming to run two Metropolis chains, under the standard serial
implementation there will be a first waitbar popping up on matlab, corre-

sponding to the first chain:

J Metropolis-Hastings E||§|rg|

(1/2) 0.356400 done, acceptation rate 0.301066

followed by a second waitbar, when the first chain is completed.

) Metropolis-Hastings E”E'El

{2/2) 0.168000 done, acceptation rate 0.324405

On the other hand, under the parallel implementation, a parallel moni-

toring plot will be produced by masterParallel.m:

) Parallel random_walk_metropolis_hastings_core E‘@‘ﬁz‘
Local - (172) 0236000 done, acceptation rate 0.146532

Local - (2/2) 0.225000 done, acceptation rate 0110867
I]

31

4 Parallel DYNARE: testing

We checked the new parallel platform for DYNARE performing a number of
tests, using different models and computer architectures. We present here
all tests performed with Windows Xp/Matlab. However, similar tests were
performed successfully under Linux/Ubuntu environment. In the Bayesian
estimation of DSGE models with DYNARE, most of the computing time is
devoted to the posterior parameter estimation with the Metropolis algorithm.
The first and second tests are therefore focused on the parallelization of the
Random Walking Metropolis Hastings algorithm (Sections 4.1-4.2). In addi-
tion, further tests (Sections 4.3-4.4) are devoted to test all the parallelized
functions in DYNARE. Finally, we compare the two parallel implementations
of the Metropolis Hastings algorithms, available in DYNARE: the Indepen-

dent and the Random Walk (Section ?7).

4.1 Test 1.

The main goal here was to evaluate the parallel package on a fixed hardware
platform and using chains of variable length. The model used for testing is
a modification of Hradisky et al. (2006). This is a small scale open economy
DSGE model with 6 observed variables, 6 endogenous variables and 19 pa-
rameters to be estimated. We estimated the model on a bi-processor machine
(Fujitsu Siemens, Celsius R630) powered with an Intel(R) Xeon(TM) CPU
2.80GHz Hyper Treading Technology; first with the original serial Metropo-
lis and subsequently using the parallel solution, to take advantage of the

two processors technology. We ran chains of increasing length: 2500, 5000,

32

10,000, 50,000, 100,000, 250,000, 1,000,000.

—— One processor
—=— two processors

o

200000 400000 600000 800000 1000000 1200000

Figure 1: Computational time (in minutes) versus chain length for the serial
and parallel implementation (Metropolis with two chains).

0

200000 400000 600000 800000 1000000 1200000

Figure 2: Reduction of computational time (i.e. the ‘time gain’) using the
parallel coding versus chain length. The time gain is computed as (Ts —
1,)/T,, where T; and T}, denote the computing time of the serial and parallel
implementations respectively.

33

Overall results are given in Figure 1, showing the computational time
versus chain length, and Figure 2, showing the reduction of computational
time (or the time gain) with respect to the serial implementation provided
by the parallel coding. The gain in computing time of the exercise is of about
45% on this test case, so reducing from 11.40 hours to about 6 hours the cost
of running 1,000,000 Metropolis iterations (the ideal gain would be of 50%

in this case).

4.2 Test 2.

The scope of the second test was to verify if results were robust over different
hardware platforms. We estimated the model with chain lengths of 1,000,000

runs on the following hardware platforms:

e Single processor machine: Intel(R) Pentium4(R) CPU 3.40GHz with

Hyper Treading Technology (Fujitsu-Siemens Scenic Esprimo);

e Bi-processor machine: two CPU’s Intel(R) Xeon(TM) 2.80GHz Hyper

Treading Technology (Fujitsu-Siemens, Celsius R630);

e Dual core machine: Intel Centrino T2500 2.00GHz Dual Core (Fujitsu-

Siemens, LifeBook S Series).

We first run the tests with normal configuration. However, since (i) dis-
similar software environment on the machine can influence the computation;
(ii) Windows service (Network, Hard Disk writing, Demon, Software Updat-
ing, Antivirus, etc.) can start during the simulation; we also run the tests

not allowing for any other process to start during the estimation. Table 2

34

Machine Single-processor | Bi-processor | Dual core
Parallel 8:01:21 7:02:19 5:39:38
Serial 10:12:22 13:38:30 11:02:14
Speed-Up rate 1.2722 1.9381 1.9498
Ideal Speed-UP rate | ~1.5 2 2

Table 2: Trail results with normal PC operation. Computing time expressed
in h:m:s. Speed-up rate is computed as T,/T,, where Ty and T, are the
computing times for the serial and parallel implementations.

gives results for the ordinary software environment and process priority is set
as low/normal.

Results showed that Dual-core technology provides a similar gain if com-
pared with bi-processor results, again about 45%. The striking results was
that the Dual-core processor clocked at 2.0GHz was about 30% faster than
the Bi-processor clocked at 2.8GHz. Interesting gains were also obtained via
multi-threading on the Single-processor machine, with speed-up being about
1.27 (i.e. time gain of about 21%). However, beware that we burned a num-
ber of processors performing tests on single processors with hyper-threading
and using very long chains (1,000,000 runs)! We re-run the tests on the
Dual-core machine, by cleaning the PC operation from any interference by
other programs and show results in Table 3. A speed-up rate of 1.06 (i.e.
5.6% time gain) can be obtained simply hiding the MATLAB waitbar. The
speed-up rate can be pushed to 1.22 (i.e. 18% time gain) by disconnecting
the network and setting the priority of the process to real time. It can be
noted that from the original configuration, taking 11:02 hours to run the
two parallel chains, the computational time can be reduced to 4:40 hours
(i.e. for a total time gain of over 60% with respect to the serial computa-

tion) by parallelizing and optimally configuring the operating environment.

35

Environment Computing time | Speed-up rate

w.r.t. Table 2
Parallel Waitbar Not Visi- | 5:06:00 1.06
ble
Parallel waitbar Not Visi- | 4:40:49 1.22

ble, Real-time Process pri-
ority, Unplugged network
cable.

Table 3: Trail results with different software configurations (optimized oper-
ating environment for computational requirements).

These results are somehow surprising and show how it is possible to reduce
dramatically the computational time with slight modification in the software
configuration.

Given the excellent results reported above, we have parallelized many
other DYNARE functions. This implies that parallel instances can be in-
voked many times during a single DYNARE session. Under the basic parallel
toolbox implementation, that we call the ‘Open/Close’ strategy, this implies
that MATLAB instances are opened and closed many times by system calls,
possibly slowing down the computation, specially for ‘entry-level” computer
resources. As mentioned before, this suggested to implement an alternative
strategy for the parallel toolbox, that we call the ‘Always-Open’ strategy,
where the slave MATLAB threads, once opened, stay alive and wait for new
tasks assigned by the master until the full DYNARE procedure is completed.

We show next the tests of these latest implementations.

36

4.3 Test 3

In this Section we use the Lubik (2003) model as test function? and a very
simple computer class, quite diffuse nowadays: Netbook personal Computer.
In particular we used the Dell Mini 10 with Processor Intel Atom Z520 (1,33
GHz, 533 MHz), 1 GB di RAM (with Hyper-trading). First, we tested the
computational gain of running a full Bayesian estimation: Metropolis (two
parallel chains), MCMC diagnostics, posterior IRF’s and filtered, smoothed,
forecasts, etc. In other words, we designed DYNARE sessions that invoke
all parallelized functions. Results are shown in Figures 3-4. In Figure 3 we
show the computational time versus the length of the Metropolis chains in
the serial and parallel setting (‘Open/Close’ strategy). With very short chain
length, parallel setting obviously slows down performances of the computa-
tions (due to delays in open/close MATLARB sessions and in synchronization),
while increasing the chain length, we can get speed-up rates up to 1.41 on
this ‘entry-level’ portable computer (single processor and Hyper-threading).
In order to appreciate the gain of parallelizing all functions invoked after
Metropolis, in Figure 4 we show the results of the experiment, but with-
out running Metropolis, i.e. we use the options load_mh_files = 1 and
mh_replic = 0 DYNARE options (i.e. Metropolis and MCMC diagnostics
are not invoked). The parallelization of the functions invoked after Metropo-
lis allows to attain speed-up rates of 1.14 (i.e. time gain of about 12%).
Note that the computational cost of these functions is proportional to the

chain length only when the latter is relatively small. In fact, the number of

2The Lubik (2003) model is also selected as the ‘official’ test model for the parallel
toolbox in DYNARE.

37

2500

2000

1500

—e— Serial
—a—Parallel

1000

Computational Time (sec)

500

o

105 1005 5005 10005 15005 20005 25005
MH Runs

Figure 3: Computational Time (s) versus Metropolis length, running all the

parallelized functions in DYNARE and the basic parallel implementation
(the ‘Open/Close’ strategy). (Lubik, 2003).

450

o

[}

@

< 300

£

% 250 —e— Serial
S 200 —s— Parallel
5|

>

o

£

o

o

105 1005 5005 10005 15005 20005 25005
MH Runs

Figure 4: Computational Time (s) versus Metropolis length, loading previ-
ously performed MH runs and running only the parallelized functions after
Metropolis (Lubik, 2003). Basic parallel implementation (the ‘Open/Close’
strategy).

38

1800
1600 2

< 1400
(5]
L
o 1200
E
% 1000 / —e— Open/Close
S 800 —=— Always Open
g /
2 600
: /4
8 400 ‘////:::;//
el
0 T T T T T T
105 1005 5005 10005 15005 20005 25005

MH Runs

Figure 5: Comparison of the ‘Open/Close’ strategy and the ‘Always-open’
strategy. Computational Time (s) versus Metropolis length, running all the
parallelized functions in DYNARE (Lubik, 2003).

sub-draws taken by posteriorIRF.m or prior_posterior_statistics.mis
proportional to the total number of MH draws up to a maximum thresh-
old of 500 sub-draws (for IRF’s) and 1,200 sub-draws (for smoother). This
is reflected in the shape of the plots, which attain a plateau when these
thresholds are reached. In Figures 5-6 we plot results of the same type of
tests just described, but comparing the ‘Open/Close’ and the ‘Always-open’
strategies. We can see in both graphs that the more sophisticated approach
"Always-open’ provides some reduction in computational time. When the
entire Bayesian analysis is performed (including Metropolis and MCMC di-
agnostics, Figure 5) the gain is on average of 5%, but it can be more than
10% for short chains. When the Metropolis is not performed, the gain rises
on average at about 10%. As expectable, the gain of the ‘Always-open’ strat-
egy is specially visible when the computational time spent in a single parallel

session is not too long if compared to the cost of opening and closing new

39

IN
o
S

w
a1
o

w
o
o

N
a1
o

—e— Open/Close

N
o
o

—=— Always Open

=
a1
o

Computational Time (sec)

=
o
o

a1
o

o

105 1005 5005 10005 15005 20005 25005
MH Runs

Figure 6: Comparison of the ‘Open/Close’ strategy and the ‘Always-open’
strategy. Computational Time (s) versus Metropolis length, running only
the parallelized functions after Metropolis (Lubik, 2003).

MATLAB sessions under the ‘Open/Close’ approach.

4.4 Test 4

Here we increase the dimension of the test model, using the QUEST III
model (Ratto et al., 2009), using a more powerful Notebook Samsung Q 45
with an Dual core Processor Intel Centrino. In Figures 7-8 we show the
computational gain of the parallel coding with the ‘Open/Close’ strategy.
When the Metropolis is included in the analysis (Figure 7), the computational
gain increases with the chain length. For 50,000 MH iterations, the speed-
up rate is about 1.42 (i.e. a 30% time gain), but pushing the computation
up to 1,000,000 runs provides an almost ideal speed-up of 1.9 (i.e. a gain
of about 50% similar to Figure 1). It is also interesting to note that for
this medium/large size model, even at very short chain length, the parallel

coding is always winning over the serial. Excluding the Metropolis from

40

DYNARE execution (Figure 8), we can see that the speed-up rate of running
the posterior analysis in parallel on two cores reaches 1.6 (i.e. 38% of time
gain).

10000
9000
8000

4000

3000

3
& 7000
g
6000
= -
— —e— Serial
S 5000
o —a=— Parallel
5|
=1
o
£
IS)
o

2000
1000

105 1005 5005 10005 20005 30005 40005 50000
MH Runs

Figure 7: Computational Time (s) versus Metropolis length, running all the
parallelized functions in DYNARE and the basic parallel implementation
(the ‘Open/Close’ strategy). (Ratto et al., 2009).

©
o
o

o
o
(=]

-
o
(=]

w
o
(=]

n

b3

2 600

E

= s —+—Serial
S 400 —= Parallel
8

>

(=%

£

Q

18]

N
o
(=]

=
o
(=]

o

105 1005 5005 10005 20005 30005 40005 50005 100000
MH Runs

Figure 8: Computational Time (s) versus Metropolis length, loading pre-
viously performed MH runs and running only the parallelized functions
after Metropolis (Ratto et al., 2009). Basic parallel implementation (the
‘Open/Close’ strategy).

41

7000

6000

5000

4000 —e— Open/Close

3000 —=— Always Open

2000

Computational Time (sec)

1000

105 1005 5005 10005 20005 30005 40005 50000
MH Runs

Figure 9: Comparison of the ‘Open/Close’ strategy and the ‘Always-open’
strategy. Computational Time (s) versus Metropolis length, running all the
parallelized functions in DYNARE (Ratto et al., 2009).

We also checked the efficacy of the ‘Always-open’ approach with respect
to the ‘Open/Close’ (Figures 9 and 10). We can see in Figure 9 that, running
the entire Bayesian analysis, no advantage can be appreciated from the more
sophisticated ‘Always-open’ approach.

600
500

400

—e— Open/Close
—=— Always Open

300

200

Computational Time (sec)

100

0

105 1005 5005 10005 20005 30005 40005 50000
MH Runs

Figure 10: Comparison of the ‘Open/Close’ strategy and the ‘Always-open’
strategy. Computational Time (s) versus Metropolis length, running only
the parallelized functions after Metropolis (QUEST III model Ratto et al.,
2009).

42

On the other hand, in Figure 10, we can see that the ‘Always-open’
approach still provides a small speed-up rate of about 1.03. These results
confirm the previous comment that the gain of the ‘Always-open’ strategy
is specially visible when the computational time spent in a single parallel
session is not too long, and therefore, the bigger the model size, the less the

advantage of this strategy.

5 Conclusions

The methodology identified for parallelizing MATLAB codes within DYNARE
proved to be effective in reducing the computational time of the most ex-
tensive loops. This methodology is suitable for ‘embarrassingly parallel’
codes, requiring only a minimal communication flow between slave and mas-
ter threads. The parallel DYNARE is built around a few ‘core’ routines, that
act as a sort of ‘parallel paradigm’. Based on those routines, parallelization
of expensive loops is made quite simple for DYNARE developers. A basic
message passing system is also provided, that allows the master thread to
monitor the progress of slave threads. The test model 1s2003.mod is avail-
able in the folder \tests\parallel of the DYNARE distribution, that allows

running parallel examples.

References

I. Azzini, R. Girardi, and M. Ratto. Parallelization of Matlab codes under

Windows platform for Bayesian estimation: A DYNARE application. In

43

DYNARE CONFERENCE, Paris School of Economics, September 2007.

B Barney. Introducing To Parallel Computing (Tutorial). Lawrence Liver-

more National Laboratory, 2009.

J.G. Brookshear. Computer Science: An Quverview. Pearson, 10th edition,

2009. ISBN 0-321-52403-9. http://www.aw-bc.com/brookshear)/.

W.L. Goffe and M. Creel. Multi-core CPUs, clusters, and grid computing:

A tutorial. Computational economics, 32(4):353-382, 2008.

M. Hradisky, R. Liska, M. Ratto, and R. Girardi. Exchange Rate Versus
Inflation Targeting in a Small Open Economy SDGE Model, for Euro-
pean Union New Members States. In DYNARE CONFERENCE, Paris
September 4-5, 2006.

T. Lubik. Investment spending, equilibrium indeterminacy, and the interac-
tions of monetary and fiscal policy. Technical Report Economics Working

Paper Archive 490, The Johns Hopkins University, 2003.

ParallelDYNARE. http://www.dynare.org/dynarewiki/paralleldynare,
2009.

Marco Ratto, Werner Roeger, and Jan in 't Veld. QUEST III:
An estimated open-economy DSGE model of the euro area with
fiscal and monetary policy. Economic Modelling, 26(1):222 —
233, 2009. doi: DOI: 10.1016/j.econmod.2008.06.014. URL

http://www.sciencedirect.com/science/article/B6VB1-4TC8J5F-1/2/7£22dal17478841a

44

M. Russinovich. PsTools v2.44, 2009. available at Microsoft TechNet,

http://technet.microsoft.com/en-us/sysinternals/bb896649.aspx.

45

SE(E) SB(E) SE(PM)

30 10 150
20 100
5
10 50
o o N s -
0 005 01 015 0 0.2 0.4 0.02 0.04 0.06 0.08
SE(elX) SE(eFX) SB(£Y)
1000
1000
10
500
5 500
0 [
0 01 02 03 01 02 03 04 005 01 015
SE(l9) SE(elwi%) SE(ekOr)
60
1000
300
40
500 200
20 100
0 0 e 0 e
0.05 0.1 0.5 0 005 01 015 0 5 10 15

x10°

Figure 11: Prior (grey lines) and posterior density of estimated parameters
(black = 100,000 runs; red = 1,000,000 runs) using the RWMH algorithm
(QUEST III model Ratto et al., 2009).

SE(e) SE(") SE(e?)
2000 200
4000
2000 1000 100
0 0 0
2 4 6 8 5 10 15 0 0.01 0.02
x107° x107
SE(R) SE(ef) SE()
300
2000 20
200
1000 10 100
0 0 0
005 01 0.15 0 0.05 01 0.15 0.05 0.1 0.15
Yucap,2 ng YK
4
20 0.02
10 2 0.01 ? 7
) N
0 0 0
0 0.05 0.1 -1 0 1 0 100 200

Figure 12: Prior (grey lines) and posterior density of estimated parameters
(black = 100,000 runs; red = 1,000,000 runs) using the RWMH algorithm
(QUEST III model Ratto et al., 2009).

46

0.8
06 008 0.02
04 0.02
0.01
0.2 0.01 '
0 0 0
0 20 40 60 0 50 100 150 0 50 100 150
TPM PX w
0.8 0.03
0.6
08 0.02
' 0.4
0.4
0.01
0.2 02
0 0 0
0 50 100 0 50 100 0 50 100
e 5§ e
4
8 8
3
6 6
2 4 4
1 2 2
oz N o o
-1 -05 0 05 -0.8-0.6-04-02 0 0.4 0.6 0.8

Figure 13: Prior (grey lines) and posterior density of estimated parameters
(black = 100,000 runs; red = 1,000,000 runs) using the RWMH algorithm
(QUEST IIT model Ratto et al., 2009).

hE ¢ Ly
4
4 4
3
2 2 2
1
0 0 B T — 0
0.4 06 08 1 -1 0 1 0 02 04 06 08
&
8 08
6 20 0.6
4 0.4
10
2 0.2
0 0 4__u_ 0
-08-06-04-02 0 06 07 08 09 0 2 4 6
/fcl P pPM
15
6 30
10 4 20
5 2 10
o o o gl A\
0.6 0.8 1 0 02 04 06 08 0.6 0.8 1

Figure 14: Prior (grey lines) and posterior density of estimated parameters
(black = 100,000 runs; red = 1,000,000 runs) using the RWMH algorithm
(QUEST IIT model Ratto et al., 2009).

47

40
30
20

10

Figure 15: Prior (grey lines) and posterior density of estimated parameters
(black = 100,000 runs; red = 1,000,000 runs) using the RWMH algorithm

3 6
2 4
1 2
0 0
0.6 0.8 1 -0.2 0 02 04 06 038 0.6 0.8 1
phei P pPOPM
3
20
15 2
10
1
5
0 0
0.6 0.8 1 0.8 0.9 1 0 0.5 1
pPWPX /)B" PP
40 10
20 5
0 0
0 02 04 06 08 0.6 0.8 1 0.6 0.8 1

(QUEST III model Ratto et al., 2009).

Figure 16: Prior (grey lines) and posterior density of estimated parameters
(black = 100,000 runs; red = 1,000,000 runs) using the RWMH algorithm

20

10

15

10

10

rp

(QUEST III model Ratto et al., 2009).

48

40 100
20 50
0 0
085 09 095 1 0 0.02 0.04 0.01 0.02 0.03 0.04
wX sfp sfpm
6 3
4 2
2 1
0 0
0.7 0.8 0.9 02 04 06 08 1 0 05 1
sfpx sfw o
3 04
2 0.3
0.2
1
0.1
——t 0 0
02 04 06 08 1 0 0.5 1 0 5 10

6
' 1 15 : 1
4
1 1 1 1
05 1 ' 1
1 05 1 2 !
1 1 A
0 ¥ 0 1 1
2 3 4 1 2 0 02 04 06 08
flﬂ!\«"l);ll W orR
2
8
4
15 1 1 6 1
1 I ¥
1 $ 2 1 4 1
1 1 1
0.5 . . 2 .
0 L 0 Y 0 1
2 3 -1 0 0.6 0.8 1
o Hom wriag
4 1 !
15 3
3 I 1
1 10 2 1
2 1 [1
1 \ st | 1 {
1 1 1
0 1 0 - 0 1
0.5 0 0.5 -0.2 0 0.2 04 0.6 08

X

Figure 17: Prior (grey lines) and posterior density of estimated parameters
(black = 100,000 runs; red = 1,000,000 runs) using the RWMH algorithm
(QUEST III model Ratto et al., 2009).

49

A A tale on parallel computing

This is a general introduction to Parallel Computing. Readers can skip it,
provided they have a basic knowledge of DYNARE and Computer Program-
ming (Goffe and Creel, 2008; Azzini et al., 2007; ParallelDYNARE, 2009).
There exists an ample scientific literature as well as an enormous quantity of
information on the Web, about parallel computing. Sometimes, this amount
of information may result ambiguous and confusing in the notation adopted
and the description of technologies. Then main the goal here is therefore
to provide a very simple introduction to this subject, leaving the reader to
Brookshear (2009) for a more extensive and clear introduction to computer
science.

Modern computer systems (hardware and software) is conceptually iden-
tical to the first computer developed by J. Von Neumann. Nevertheless, over
time, hardware, software, but most importantly hardware € software together
have acquired an ever increasing ability to perform incredibly complex and
intensive tasks. Given this complexity, we use to explain the modern com-
puter systems as the “avenue paradigm”, that we summarize in the next
tale.

Nowadays there is a small but lovely town called “CompuTown”. In
CompuTown there are many roads, which are all very similar to each other,
and also many gardens. The most important road in CompuTown is the Von
Neumann Avenue. The first building in Von Neumann Avenue has three
floors (this is a computer system: PC, workstation, etc.; see Figure 18 and

Brookshear (2009)). Floors communicate between them only with a single

50

Second floor: the user programs ...

First floor:
the Operating System

Ground floor:
the Hardware ... <«—

P s

Figure 18: The first building in Von Neumann Avenue: a Computer System

stair. In each floor there are people coming from the same country, with the
same language, culture and uses. People living, moving and interacting with
each other in the first and second floor are the programs or software agents or,
more generally speaking, algorithms (see chapters 3, 5, 6 and 7 in Brookshear
(2009)). Examples of the latter are the softwares MATLAB, Octave, and a
particular program called the operating system (Windows, Linux, Mac OS,
ete.).

People at the ground floor are the transistors, the RAM, the CPU, the
hard disk, etc. (i.e. the Computer Architecture, see chapters 1 and 2 in
Brookshear). People at the second floor communicate with people at the
first floor using the only existing scale (the pipe). In these communica-
tions, people talk two different languages, and therefore do not understand
each other. To remove this problem people define a set of words, fixed and

understood by everybody: the Programming Languages. More specifically,

o1

these languages are called high-level programming languages (Java, C/C++,
FORTRAN,MATLAB, etc.), because they are related to people living on
the upper floors of the building! Sometimes people in the building use also
pictures to communicate: the icons and graphical user interface.

In a similar way, people at the first floor communicate with people at the
ground floor. Not surprisingly, in this case, people use low-level programming
languages to communicate to each other (assembler, binary code, machine
language, etc.). More importantly, however, people at the first floor must also
manage and coordinate the requests from people on the second floor to people
at the ground floor, since there is no direct communication between ground
and second floor. For example they need to translate high-level programming
languages into binary code®: the Operating System performs this task.

Sometimes, people at the second floor try to talk directly with people at
the ground floor, via the system calls. In the parallelizing software presented
in this document, we will use frequently these system calls, to distribute the
jobs between the available hardware resources, and to coordinate the overall
parallel computational process. If only a single person without family lives
on the ground floor, such as the porter, we have a CPU single core. In this
case, the porter can only do one task at a time for the people in first or
second floor (the main characteristic of the Von Neumann architecture). For
example, in the morning he first collects and sorts the mail for the people
in the building, and only after completing this task he can take care of the

garden. If the porter has to do many jobs, he needs to write in a paper the list

3The process to transform an high-level programming languages into binary code is
called compilation process.

92

of things to do: the memory and the CPU load. Furthermore, to properly
perform its tasks, sometimes the porter has to move some objects trough
the passageways at the ground floor (the System Bus). If the passageways
have standard width, we will have a 32 bits CPU architecture (or bus). If
the passageways are very large we will have, for example, a 64 bits CPU
architecture (or bus). In this scenario, there will be very busy days where
many tasks have to be done and many things have to be moved around: the
porter will be very tired, although he will be able to ‘survive’. The most
afflicted are always the people at the first floor. Every day they have a lot of
new, complex requests from the people at the second floor. These requests
must be translated in a correct way and passed to the porter. The people at
the second floor (the highest floor) “live in cloud cuckoo land”. These people
want everything to be done easily and promptly: the artificial intelligence,
robotics, etc. The activity in the building increases over time, so the porter
decides to get helped in order to reduce the execution time for a single job.

There are two ways to do this:

e the municipality of CompuTown interconnects all the buildings in the
city using roads, so that the porter can share and distribute the jobs
(the Computer Networks): if the porters involved have the same na-
tionality and language we have a Computer Cluster, otherwise we have
a Grid. Nevertheless, in both cases, it is necessary to define a correct
way in which porters can manage, share and complete a shared job:

the communication protocol (TCP/IP, internet protocol, etc.);

e the building administrator employs an additional porter, producing a

33

Bi-Processor Computer. In other case, the porter may get married,
producing a dual-core CPU. In this case, the wife can help the porter
to perform his tasks or even take entirely some jobs for her (for example
do the accounting, take care of the apartment, etc.). If the couple has
a children, they can have a further little help: the thread and then the

Hyper-threading technology.

Now a problem arises: who should coordinate the activities between the
porters (and their family) and between the other buildings? Or, in other
words, should we refurbish the first and second floors to take advantage of
the innovations on the ground floor and of the new roads in CompuTown?
First we can lodge new persons at the first floor: the operating systems with
a set of network tools and multi-processors support, as well as new people at
the second floor with new programming paradigms (MPI, OpenMP, Parrallel
DYNARE, etc.). Second, a more complex communication scheme between
first and ground floor is necessary, building a new set of stairs. So, for
example, if we have two stairs between ground and first floor and two porters,
using multi-processors and a new parallel programming paradigm, we can
assign jobs to each porter directly and independently, and then coordinate
the overall work. In parallel DYNARE we use this kind of ‘refurbishing’
to reduce the computational time and to meet the request of people at the
second floor.

Unfortunately, this is only an idealized scenario, where all the citizens
in CompuTown live in peace and cooperate between them. In reality, some
building occupants argue with each other and this can cause stopping their

job: these kinds of conflicts may be linked to software and hardware com-

o4

patibility (between ground and first floor), or to different software versions
(between second and first floor). The building administration or the munic-
ipality of CompuTown have to take care of these problems an fix them, to
make the computer system operate properly.

This tale (that can be also called The Programs’s Society) covered in a

few pages the fundamental ideas of computer science.

95

